Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The Faber polynomials for annular sectors

Authors: John P. Coleman and Nick J. Myers
Journal: Math. Comp. 64 (1995), 181-203, S1
MSC: Primary 30C10; Secondary 30C20, 30E10
MathSciNet review: 1260127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A conformal mapping of the exterior of the unit circle to the exterior of a region of the complex plane determines the Faber polynomials for that region. These polynomials are of interest in providing near-optimal polynomial approximations in a variety of contexts, including the construction of semiiterative methods for linear equations. The relevant conformal map for an annular sector $ \{ z:R \leq \vert z\vert \leq 1,\theta \leq \vert\arg z\vert \leq \pi \} $, with $ 0 < \theta \leq \pi $, is derived here and a recurrence relation is established for the coefficients of its Laurent expansion about the point at infinity. The recursive evaluation of scaled Faber polynomials is formulated in such a way that an algebraic manipulation package may be used to generate explicit expressions for their coefficients, in terms of two parameters which are determined by the interior angle of the annular sector and the ratio of its radii. Properties of the coefficients of the scaled Faber polynomials are established, and those for polynomials of degree $ \leq 15$ are tabulated in a Supplement at the end of this issue. A simple closed form is obtained for the coefficients of the Faber series for 1/z. Known results for an interval, a circular arc, and a circular sector are reproduced as special cases.

References [Enhancements On Off] (What's this?)

  • [1] C.K. Chui, J. Stöckler and J.D. Ward, A Faber series approach to cardinal interpolation, Math. Comp. 58 (1992), 255-273. MR 1106961 (92e:41001)
  • [2] J.P. Coleman, Complex polynomial approximation by the Lanczos $ \tau $-method: Dawson's integral, J. Comput. Appl. Math. 20 (1987), 137-151. MR 920384 (88j:65038)
  • [3] -, Polynomial approximations in the complex plane, J. Comput. Appl. Math. 18 (1987), 193-211. MR 896424 (88d:65046)
  • [4] J.P. Coleman and R.A. Smith, The Faber polynomials for circular sectors, Math. Comp. 49 (1987), 231-241. MR 890264 (88e:30022)
  • [5] -, Supplement to the Faber polynomials for circular sectors, Math. Comp. 49 (1987), S1-S4. MR 890264 (88e:30022)
  • [6] J.H. Curtiss, Faber polynomials and Faber series, Amer. Math. Monthly 78 (1971), 577-596. MR 0293104 (45:2183)
  • [7] M. Eiermann, On semiiterative methods generated by Faber polynomials, Numer. Math. 56 (1989), 139-156. MR 1018298 (90k:65095)
  • [8] M. Eiermann, W. Niethammer, and R.S. Varga, A study of semiiterative methods for nonsymmetric systems of linear equations, Numer. Math. 47 (1985), 505-533. MR 812617 (87d:65034)
  • [9] S.W. Ellacott, Computation of Faber series with application to numerical polynomial approximation in the complex plane, Math. Comp. 40 (1983), 575-587. MR 689474 (84e:65021)
  • [10] -, On Faber polynomials and Chebyshev polynomials, Approximation Theory IV (C.K. Chui, L.L. Schumaker, and J.D. Ward, eds.), Academic Press, New York, 1983, pp. 457-464. MR 754376 (85h:30006)
  • [11] -, On the Faber transform and efficient numerical rational approximation, SIAM J. Numer. Anal. 20 (1983), 989-1000. MR 714694 (85f:41010)
  • [12] S.W. Ellacott and M.H. Gutknecht, The polynomial Carathéodory-Fejér approximation method for Jordan regions, IMA J. Numer. Anal. 3 (1983), 207-220. MR 716463 (85j:30078)
  • [13] S.W. Ellacott and E.B. Saff, Computing with the Faber transform, Rational Approximation and Interpolation (P.R. Graves-Morris, E. Saff, and R.S. Varga, eds.), Lecture Notes in Math., vol. 1105, Springer-Verlag, Berlin, 1984, pp. 412-418. MR 783290 (86i:30044)
  • [14] -, On Clenshaw's method and a generalisation to Faber series, Numer. Math. 52 (1988), 499-509. MR 945096 (89i:34008)
  • [15] G.H. Elliott, The construction of Chebyshev approximations in the complex plane, Ph.D. Thesis, University of London, 1978.
  • [16] L. Fox and I.B. Parker, Chebyshev polynomials in numerical analysis, Oxford Univ. Press, London, 1968. MR 0228149 (37:3733)
  • [17] D. Gaier, Lectures on complex approximation, Birkhäuser, Boston, 1987. MR 894920 (88i:30059b)
  • [18] K. Gatermann, C. Hoffmann, and G. Opfer, Explicit Faber polynomials on circular sectors, Math. Comp. 58 (1992), 241-253. MR 1106967 (92h:30011)
  • [19] -, Supplement to explicit Faber polynomials on circular sectors, Math. Comp. 58 (1992), S1-S6. MR 1106967 (92h:30011)
  • [20] U. Grothkopf and G. Opfer, Complex Chebyshev polynomials on circular sectors with degree six or less, Math. Comp. 39 (1982), 599-615. MR 669652 (84a:30070)
  • [21] P. Henrici, Applied and computational complex analysis, Vol. 1, Wiley, New York, 1974. MR 0372162 (51:8378)
  • [22] -, Applied and computational complex analysis, Vol. 3, Wiley, New York, 1986. MR 822470 (87h:30002)
  • [23] T. Kövari and C. Pommerenke, On Faber polynomials and Faber expansions, Math. Z. 99 (1967), 193-206. MR 0227429 (37:3013)
  • [24] A.I. Markushevich, Theory of functions of a complex variable, Chelsea, New York, 1977.
  • [25] N. Papamichael, M.J. Soares, and N.S. Stylianopoulos, A numerical method for the computation of Faber polynomials for starlike domains, IMA J. Numer. Anal. 13 (1993), 181-193. MR 1210821 (93m:65024)
  • [26] C. Pommerenke, Über die Faberschen Polynome schlichter Funktionen, Math. Z. 85 (1964), 197-208. MR 0168772 (29:6028)
  • [27] A.P. Prudnikov, Yu.A. Brychkov, and O.I. Marichev, Integrals and series, Vol. I: Elementary functions, Gordon and Breach, New York, 1988.
  • [28] V.I. Smirnov and N.A. Lebedev, Functions of a complex variable, constructive theory, Iliffe, London, 1968. MR 0229803 (37:5369)
  • [29] G. Starke and R.S. Varga, A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math. 64 (1993), 213-240. MR 1199286 (93m:65043)
  • [30] J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, 5th ed., Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, RI, 1969. MR 0218588 (36:1672b)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 30C10, 30C20, 30E10

Retrieve articles in all journals with MSC: 30C10, 30C20, 30E10

Additional Information

Keywords: Faber polynomials, conformal mapping, annular sector, Faber series, transfinite diameter
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society