Factors of generalized Fermat numbers

Authors:
Harvey Dubner and Wilfrid Keller

Journal:
Math. Comp. **64** (1995), 397-405

MSC:
Primary 11A51; Secondary 11Y05

MathSciNet review:
1270618

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized Fermat numbers have the form . Their odd prime factors are of the form , *k* odd, . It is shown that each prime is a factor of some for approximately bases *b*, independent of *n*. Divisors of generalized Fermat numbers of base 6, base 10, and base 12 are tabulated. Three new factors of standard Fermat numbers are included.

**[1]**John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr.,*Factorizations of 𝑏ⁿ±1*, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR**996414****[2]**C. Caldwell,*Review of the Cruncher PC plug-in board*, J. Recreational Math.**25**(1993), 56-57.**[3]**H. Dubner,*Generalized Fermat primes*, J. Recreational Math.**18**(1985-86), 279-280.**[4]**Harriet Griffin,*Elementary theory of numbers*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. MR**0064063****[5]**W. Keller,*Table of primes of the form*,*k*odd , Hamburg, 1993 (unpublished).**[6]**Wilfrid Keller,*Factors of Fermat numbers and large primes of the form 𝑘⋅2ⁿ+1*, Math. Comp.**41**(1983), no. 164, 661–673. MR**717710**, 10.1090/S0025-5718-1983-0717710-7**[7]**M. Morimoto,*On prime numbers of Fermat type*, Sûgaku**38**(1986), 350-354. (Japanese)**[8]**Hans Riesel,*Common prime factors of the numbers 𝐴_{𝑛}=𝑎^{2ⁿ}+1*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 264–269. MR**0258735****[9]**-,*Some factors of the numbers**and*, Math. Comp.**23**(1969), 413-415.

Retrieve articles in *Mathematics of Computation*
with MSC:
11A51,
11Y05

Retrieve articles in all journals with MSC: 11A51, 11Y05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270618-1

Article copyright:
© Copyright 1995
American Mathematical Society