Collocating convolutions

Author:
Frank Stenger

Journal:
Math. Comp. **64** (1995), 211-235

MSC:
Primary 65D30; Secondary 41A35, 65N35, 65R10

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270624-7

MathSciNet review:
1270624

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit method is derived for collocating either of the convolution integrals or , where , a subinterval of . The collocation formulas take the form or , where **g** is an *m*-vector of values of the function *g* evaluated at the "Sinc points", and are explicitly described square matrices of order *m*, and , for arbitrary . The components of the resulting vectors **p** (resp., **q**) approximate the values of *p* (resp., *q*) at the Sinc points, and may then be used in a Sinc interpolation formula to approximate *p* and *q* at arbitrary points on (a, b). The procedure offers a new method of approximating the solutions to (definite or indefinite) convolution-type integrals or integral equations as well as solutions of partial differential equations that are expressed in terms of convolution-type integrals or integral equations via the use of Green's functions. If *u* is the solution of a partial differential equation expressed as a *v*-dimensional convolution integral over a rectangular region **B**, and if *u* is analytic and of class on the interior of each line segment in **B**, then the complexity of computing an -approximation of *u* by the method of this paper is .

**[1]**Hermann Brunner,*Discretization of Volterra integral equations of the first kind*, Math. Comp.**31**(1977), no. 139, 708–716. MR**0451794**, https://doi.org/10.1090/S0025-5718-1977-0451794-6**[2]**-,*A survey of recent advances in the numerical solution of Volterra integral and integro-differential equations*, J. Comput. Appl. Math.**8**(1982), 147-163.**[3]**Frank de Hoog and Richard Weiss,*High order methods for Volterra integral equations of the first kind*, SIAM J. Numer. Anal.**10**(1973), 647–664. MR**0373354**, https://doi.org/10.1137/0710057**[4]**Seymour Haber,*Two formulas for numerical indefinite integration*, Math. Comp.**60**(1993), no. 201, 279–296. MR**1149292**, https://doi.org/10.1090/S0025-5718-1993-1149292-9**[5]**Ralph Baker Kearfott,*A sinc approximation for the indefinite integral*, Math. Comp.**41**(1983), no. 164, 559–572. MR**717703**, https://doi.org/10.1090/S0025-5718-1983-0717703-X**[6]**Peter Linz,*A survey of methods for the solution of Volterra integral equations of the first kind*, Application and numerical solution of integral equations (Proc. Sem., Australian Nat. Univ., Canberra, 1978) Monographs Textbooks Mech. Solids Fluids: Mech. Anal., vol. 6, Nijhoff, The Hague, 1980, pp. 183–194. MR**582990****[7]**Peter Linz,*Analytical and numerical methods for Volterra equations*, SIAM Studies in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. MR**796318****[8]**C. Lubich,*Convolution quadrature and discretized operational calculus. I*, Numer. Math.**52**(1988), no. 2, 129–145. MR**923707**, https://doi.org/10.1007/BF01398686**[9]**C. Lubich,*Convolution quadrature and discretized operational calculus. II*, Numer. Math.**52**(1988), no. 4, 413–425. MR**932708**, https://doi.org/10.1007/BF01462237**[10]**Ch. Lubich and A. Ostermann,*Runge-Kutta methods for parabolic equations and convolution quadrature*, Math. Comp.**60**(1993), no. 201, 105–131. MR**1153166**, https://doi.org/10.1090/S0025-5718-1993-1153166-7**[11]**John Lund and Kenneth L. Bowers,*Sinc methods for quadrature and differential equations*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1171217****[12]**Bruce V. Riley,*A sinc-collocation method for weakly singular Volterra integral equations*, Computation and control (Bozeman, MT, 1988) Progr. Systems Control Theory, vol. 1, Birkhäuser Boston, Boston, MA, 1989, pp. 263–275. MR**1046856****[13]**Frank Stenger,*Numerical methods based on sinc and analytic functions*, Springer Series in Computational Mathematics, vol. 20, Springer-Verlag, New York, 1993. MR**1226236****[14]**Frank Stenger,*Numerical methods based on Whittaker cardinal, or sinc functions*, SIAM Rev.**23**(1981), no. 2, 165–224. MR**618638**, https://doi.org/10.1137/1023037**[15]**M. Stromberg,*Solution of shock problems by methods using sinc functions*, Ph.D. thesis, University of Utah, 1988.**[16]**-,*Approximate solution of quasilinear equations of conservation law type*, Computation and Control (K. L. Bowers and J. Lund, eds.), Birkhäuser, Basel, 1989, pp. 316-331.**[17]**D. V. Widder,*The Laplace transform*, Princeton Univ. Press, Princeton, NJ, 1936.**[18]**Andrew Young,*The application of approximate product integration to the numerical solution of integral equations*, Proc. Roy. Soc. London Ser. A.**224**(1954), 561–573. MR**0063779**, https://doi.org/10.1098/rspa.1954.0180

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30,
41A35,
65N35,
65R10

Retrieve articles in all journals with MSC: 65D30, 41A35, 65N35, 65R10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1270624-7

Keywords:
Indefinite integral convolution

Article copyright:
© Copyright 1995
American Mathematical Society