TABLE ERRATA

<table>
<thead>
<tr>
<th>Page</th>
<th>Formula</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxiii</td>
<td>line l – 3, ...</td>
<td>The Factorial (Gamma) Function</td>
<td>By writing (\Psi(z + 1)) instead of (\Psi(z)) in the formula on line 5 of page xxxiv, this section becomes useless, except for the notation (\Gamma(1 + z) = z! = \Pi(z)). In fact (\Psi(z)) so defined is identical to (\psi(z)) as defined in 8.36, and the letter (\psi) should in any case be used in the remaining four equations.</td>
</tr>
<tr>
<td>xxxv</td>
<td>line 9</td>
<td></td>
<td>For ((z \gg 1 \text{ and } n > 0)) read ([\text{arg} z < \frac{3}{4} \pi]).</td>
</tr>
<tr>
<td>xxxvii</td>
<td>line l – 5</td>
<td>Add (\frac{1}{1} \sqrt{\alpha} K_{1\frac{3}{2}} \left(\frac{3}{4} z^2 \right)).</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line 11</td>
<td>For (\text{bei ber}) read (\text{bei}\nu \text{ ber}\nu).</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line 16</td>
<td>For ((x)) read ((t)).</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line 8</td>
<td>For (\text{See probability}) read (\text{Probability}).</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line 9</td>
<td>For (\text{erfc read erf}).</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line 13</td>
<td>Delete.</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line 18</td>
<td>For (F(\alpha; \beta_1)) read (F(\alpha; \beta_1)).</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line l – 17</td>
<td>For Other nonperiodic read Non-periodic.</td>
<td></td>
</tr>
<tr>
<td>xlii</td>
<td>line l – 12</td>
<td>For Other nonperiodic read Non-periodic.</td>
<td></td>
</tr>
<tr>
<td>xliii</td>
<td>line 6,7</td>
<td>For Bessel functions of an imaginary argument read Modified Bessel functions.</td>
<td></td>
</tr>
<tr>
<td>xliii</td>
<td>line 14, 15</td>
<td>For Bessel functions of imaginary argument read Modified Bessel functions.</td>
<td></td>
</tr>
<tr>
<td>xliii</td>
<td>line 25</td>
<td>For Neumann’s functions read Bessel functions of the second kind (Neumann functions).</td>
<td></td>
</tr>
<tr>
<td>xliii</td>
<td>line l – 9</td>
<td>For (p_\mu(x)) read (P_\nu(x)).</td>
<td></td>
</tr>
<tr>
<td>xliii</td>
<td>line l – 5</td>
<td>For (p_{n(\alpha, \beta)}(x)) read (P_{n(\alpha, \beta)}(x)).</td>
<td></td>
</tr>
<tr>
<td>xlv</td>
<td>line l – 9, ...</td>
<td>Replace the section between (T_n(x)) and (U_n(x)) by (</td>
<td>\Theta(u), \Theta_1(u), \theta_k(u), \theta_k(u, q), \theta_k(u</td>
</tr>
<tr>
<td>xlv</td>
<td></td>
<td>This whole page “Notations” is superficial and confused.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.132</td>
<td>Add ([n \rightarrow \infty]).</td>
<td></td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
TABLE ERRATA

13 0.243.2. For iread 1 in the upper limit of the integral.
20 0.320.3. For t read l in the limits of the integral.
27 1.211.1. For \(x^h \) read \(x^k \).
170 2.532.2. Insert a – sign before the first term on the right-hand side.
170 2.533.1. For \(\cos(a + b) \) read \(\cos(a + b)x \).
170 2.533.2. For \(\sin dx \) read \(\sin c x \) \(dx \).
263 3.194.4. For \(\Re \nu \) read \(\Re \mu \).
353 3.313.2. For \(\beta \) read \(B \).
354 3.318.2. For \(\sqrt{\pi}e \) read \(\sqrt{\pi}e \).
354 3.322.1. For \(u > 0 \) read \(u \geq 0 \).
355 3.323.1. For \(\sim \) read \(= \); delete \([q \neq -2]\).
355 3.323.2. For \(\frac{\sqrt{2}}{p} \) read \(\frac{\sqrt{2}}{[p]} \); delete \([p > 0]\).
357 3.351.1. - 9. All these entries are superfluous. They can easily be deduced from the indefinite integrals in 2.32.
359 3.352.3. For \(n > 2 \) read \(n \geq 2 \).
359 3.353.5. Add \(n \geq 0 \) in the restrictions.
359 3.354.5. For \(\frac{x}{a} \) read \(\frac{x}{[a]} \);

for \([a > 0], \ p \) real read \([a \neq 0, \ p \) real]\).
360 3.355.3. 4. For \(\Im(a^2) > 0 \) read \(\Im(a^2) \neq 0 \).
365 3.383.5. For \(\Psi(q, q+1-v, p/a) \) read \(\Psi(q, q+1-v, p/a) \);
for \(0(a/p)^{N+1} \) read \(O((a/p)^{N+1}) \).
369 3.389.2. For \(\left| T^{1-v}_{1-\rho-v, 0, \frac{1}{4}} \right| \) read \(\left| 1-\rho-v, 0, \frac{1}{2} \right| \).
369 3.389.3. For \(L_{\nu+\frac{1}{2}} \) read \(L_{\nu+\frac{1}{2}} \).
371 3.411.6. For \(\beta^n \) read \(\beta^\mu \).
373 3.415.2. For \(B_{2k+2} \) read \(B_{2k+2} \).
373 3.416.3. For \(2^{2^n} \) read \(2^{2^n} \).
375 3.423.3. For \(a < 1 \) read \(-1 \leq a < 1 \).
376 3.423.4. For \(\Phi(\beta; \nu - 1; \mu) - (\mu - 1)\Phi(\beta; \nu; \mu) \) read

\(\Phi(\beta; \nu - 1; \mu) - (\mu - 1)\Phi(\beta; \nu; \mu) \).
376 3.424.2. For \(n! \) read \(-n! \); add \([a > -1, n = 1, 2, \ldots] \).
376 3.425.2. For \(B \) read \(B \).
382 3.461 This number is missing.
385 3.475.1. This integral is incorrect. In [4, Table 92(14)], the first term reads \(\exp(-x^{2^n}) \) instead of \(\exp(-x^2) \).

From 3.475.2. on p. 386, and under the assumption that this integral is valid for all \(n \in \mathbb{Z} \), 3.475.1. can be written as

\[
\int_0^\infty \left\{ e^{-x^2} - \frac{1}{1 + x^{2n}} \right\} \frac{dx}{x} = -\frac{1}{2} C \quad [n \in \mathbb{Z}].
\]

This would also imply

\[
\int_0^\infty \frac{x^{2^n-1} - x}{(1 + x^2)(1 + x^{2n})} \, dx = 0 \quad [n \in \mathbb{Z}].
\]

There is numerical evidence that the integrals in
3.475, and maybe others in this section, are also
valid for noninteger values of \(n \).

For \(2^{\mu+\nu-\rho}\beta \) read \(2^{\mu+\nu-\rho-2}\beta \);
for \(2 - \frac{1}{2}\mu - \nu \) read \(\rho + 2 - \frac{1}{2}\mu - \nu \).

For \(\text{Re}(2 + \rho) \text{Re}(\mu + \nu) \) read
\(\text{Re}(2 + \rho) > \text{Re}(\mu + \nu) \).

For \(_2F_1 \) read \(\frac{1}{2}_2F_1 \); for \(B \) read \(B \).

Insert 9. — after the double line.

For "is divergent" read
\[
\frac{\pi^3}{4b^2} \sin \frac{a\pi}{2b} \sec^3 \frac{a\pi}{2b} \quad [b > |a|].
\]

Increase the numbers 9. to 23. by 1, thus read 10.
to 24.

Replace \(\cos x \) by \(\cos^{2m+1} x \); add \([n > m \geq 0] \).

Replace \(\cos x \) by \(\cos^{2m+1} x \); add \([n > m \geq 0] \).

Replace \(\cos x \) by \(\cos^{2m+1} x \); add \([n > m \geq 0] \).

Delete the factor 2 in the integrand.

Replace the clumsy second and third line by
\[
= [1 - (-1)^{m+n}] \frac{m!}{(m+n)!} \left\{ \sum_{k=0}^{\text{min}(m,n)-1} \frac{(m + n - 2k - 2)!!}{(m-k)!} + s \right\}
\]
\[
s = \begin{cases}
0 & [n - m \leq 0 \text{ or } \frac{1}{2}(n - m) \text{ even}], \\
(n - m - 2)!! & [n - m \text{ odd}], \\
2(n - m - 2)!! & [\frac{1}{2}(n - m) \text{ odd}].
\end{cases}
\]

Replace the clumsy formula on top of p. 417 by \([9, \text{No. 2.5.12.24,25.}] \)
\[
= [1 + (-1)^{m+n}] \left\{ \begin{array}{ll}
0 & [n < m], \\
\frac{sn!}{(n - m)!!(n + m)!!} & [n \geq m]
\end{array} \right.
\]
\[
(s = \frac{1}{2}\pi \text{ if } n - m \text{ even}, \text{ s } = 1 \text{ if } n - m \text{ odd}).
\]

For \(n \) read \(\nu \) (4 times).

Replace the right-hand side by \(\frac{1}{2}\beta(\mu) \).

For \(2^{p+2n+1} \) read \(2^{p+2n+1} \).

In the reviewer's copy this formula is mutilated. It
should read
\[
\int_{\theta}^{\frac{\pi}{2}} \frac{\tan^\mu x \, dx}{1 + \sin x \cos x} = \frac{1}{3} \left[\psi \left(\frac{\mu + 2}{3} \right) - \psi \left(\frac{\mu + 1}{3} \right) \right].
\]

Delete the factor 2 in the integrand.

For \(iab \) read \(ia\beta \).

For \(iab \) read \(ia\beta \).
TABLE ERRATA

455 3.747 1. Add \(2\pi G - \frac{7}{2} \zeta(3) \) \([m = 2] \).

458 3.761 6. For \(\Gamma(\mu + 1; ia) + \Gamma(\mu + 1; -ia) \) read \(\Gamma(\mu + 1; ia) + \Gamma(\mu + 1; -ia) \).

461 3.766 4. Replace \(\Gamma(2(\mu + \frac{1}{2})) \) by \(\Gamma(2\mu + 1) \).

465 3.771 12. For \(s_{\nu-1}\nu+1 \) read \(s_{\nu+1}\nu-1 \).

467 3.773 6. For \(0 \leq m < n + \frac{1}{2} \) read \(0 \leq m \leq n \).

477 3.812 4. Replace \(r\left[2(j_i^2 + \omega)^2\right] \) by \(T(2j + 1) \).

467 3.771 6. Delete \([\text{divergent if } a^2 = 0] \).

467 3.771 5. For \(0 < a^2 \leq 1 \) read \(0 < a^2 < 1 \); delete \([\text{divergent if } a^2 = 0] \).

480 3.824 2. For \(\pi \) read \(\pi \).

484 3.824 3. For \(\pi \) read \(\pi \).

484 3.824 4. For \(\sin^{2m+1} x \) read \(\sin^{2m+1} x \).

484 3.824 5. Replace the right-hand side by the simpler formula

\[
\frac{\pi}{2^{2m+1}a} \sum_{k=0}^{m} (-1)^k \left(\frac{2m}{m-k} \right) e^{-2ka}
\]

which has been proposed in [1] is incorrect; for \(m = 1 \), it yields \(\frac{x}{2a} (2 - e^{-2a}) \) instead of \(\frac{x}{2a} (1 - e^{-2a}) \) [9, No. 2.5.6.11].

484 3.824 6. For \(2^{2m} \) read \(2^{2m}a \).

495 3.836 5. Delete \(I_n(b) = \frac{2}{\pi} \); write second line as \([0 \leq b < n, n \geq 1, r = (n - b)/2] \).

512 3.893 4. Replace first line by \(4. - \); delete second and third lines.

513 3.895 9. Add \([p > 0] \).

514 3.895 10. Delete \([p \neq 0] \).

514 3.895 12. For \(a \geq 0 \) read \(a > 0 \).

515 3.899 1. For \(p^2x^2 \) read \(-p^2x^2 \).

556 4.212 5. For \(1 + \ln x \) read \(a + \ln x \).

560 4.224 11. This entry is confused and should be given as follows:

\[
\int_0^{\frac{\pi}{2}} \ln(1 + a \sin x)^2 \, dx
\]

\[
= \pi \ln(a/2) + 4G + 4 \sum_{k=1}^{\infty} \frac{b^k}{k} \sum_{n=1}^{k} \frac{(-1)^{n+1}}{2n-1} \quad [a > 0],
\]

\[
= -\pi \ln 2 - 4G \quad [a = -1];
\]

\[
b = (1 - a)/(1 + a).
\]
Note the unusual notation \(\ln(1 + a \sin x)^2 \). It occurs also in other formulas and means \(2 \ln |1 + a \sin x| \). Delete BI((308))(5,6,7,8).

For \(\mu - a \) is not a natural number" read \(|\arg a| < \pi \).

For \(a > 0 \) read \(|\arg a| < \pi, n = 1, 2, \ldots \).

For \(\psi(\mu) \) read \(\psi'(\mu) \).

For \(\frac{1}{2}(n - 1) \) read \(\left\lfloor \frac{1}{2}(n - 1) \right\rfloor \).

For \(\psi(1) \) by \(+C \).

For \(\psi''(1) \) by \(+2\zeta(3) \).

For \(\frac{\beta}{\beta - \bar{x}} \) read \(\left| \frac{\beta}{\beta - \bar{x}} \right| \); delete "\(\beta \) cannot be a real positive number."

Delete the text before the formula.

For \(\Gamma(\nu) \) read \(\Gamma(\nu) \).

Move \(n = 1, 2, \ldots, a > 0 \) to first line; move BI((356))(2) to second line.

Delete the incorrect second line.

The two results given are incorrect. Replace them by \(\frac{1}{2}(-1)^n(n - 1)! (1 - 2^{-(n+1)})\zeta(n + 1) \).

Delete NH 203(6).

Delete NH 204. Note the relation to 6.4434.
TABLE ERRATA

691 6.469 2. For $= 0$ read $\frac{n}{1 - n^2}$;
for $[n - \text{odd}]$ read $[n > 1 \text{ odd}]$.

693 6.512 2. Add $[n \geq 0]$.

703 6.541 2. For $\Gamma(1 - \nu + k)$ read $\Gamma(1 + \nu + k)$ in second line.
Replace the third line, which does not contain new information, by [2]: For $0 < a < b$, interchange a and b in the right-hand side.

704 6.541 3. For $(x^2 + z^2)^p$ read $(x^2 + z^2)^p$. The notation
\[\Gamma \left[\begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right] = \frac{\Gamma(a_1) \cdots \Gamma(a_p)}{\Gamma(b_1) \cdots \Gamma(b_q)} \]
used in this entry is apparently not defined.

707 6.561 13. For $a^{\mu+1}$ read $a^{\mu+1} \Gamma$.

717 6.577 2. For $1 + \text{Re} \mu - 2n$ read $2 + \text{Re} \mu - 2n$.

717 6.577 2. For $\text{Re} \nu - 2n + 1$ read $\text{Re} \nu - 2n + 2$.

718 6.578 5. This integral is probably wrong. In any case it is divergent for certain values of μ.

722 6.584 5. It is not clear what is meant by $\prod_{j,n}$.
For $\sum \mu_j$ read $\sum_j \mu_j$ in the fourth line.

730 6.613 For x^2 read x^2.

742 6.646 3. For e^{-bx} read e^{-bs}.

743 6.647 3. For $-(a/2)$ read $-(\alpha/2)$.

778 6.753 3., 4. The complicated form of the results for these two integrals, which are newly introduced without giving a reference, differs considerably from the results given in [10, No. 2.12.25.3., 2.15.11.2] for more general integrals. Also, it is unclear why these integrals have not been introduced as 6.753 7. and 6.753 8. The integrals 6.753 3. and 6.753 4. in the previous edition [6], which are now deleted, are not covered by 6.753 5. and 6.753 6., as it might appear at first glance.

830 7.229 This formula is identical to 7.228. Delete.

847 7.391 9. For $\Gamma(\alpha - \beta + m)$ read $\Gamma(\sigma - \beta + m)$.

853 7.422 2. In [14], referring to the previous edition [6], this formula is said to be incorrect, in particular for $n = 0$, $\sigma = 0$, $\alpha = 1$. It does not necessarily become correct merely by excluding these values, as has been done. Also sign errors are now present in the superscript of the first L on the right-hand side.
The problem lies, however, in the interchanged subscripts of the two L on the right-hand side. Numerical tests suggest that:
For $L^{\sigma + m - n}_n$ read $L^{\sigma - m + n}_m$; for $L^{\nu - \sigma + m - n}_m$ read $L^{\nu - \sigma + m - n}_n$; retain from the restrictions only $[y > 0,$ $\text{Re} \alpha > 0,$ $\text{Re} \nu > -1]$.

871 7.629 1. For $\sqrt{a^2}$ read $\sqrt{a^2}$.

887 7.683 For $\frac{\mu - \sigma - 1}{1}$ read $\frac{\mu - \sigma - 1}{2}$ in the subscript of M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
914 8.130.8. Delete "which is not a constant".
926 8.178.2. For \(t^1 \tau \) read \(t \tau \).
926 8.18–19 The notation used for the theta functions in this volume is deplorably inconsistent, not only with respect to the letters \(\vartheta \) and \(\theta \). See in particular formulas 8.199(1)–(3) and §6.16.
928 8.186 In the equation, for \(\vartheta_z \) read \(\vartheta_\tau \).
929 8.189.1. For \(\vartheta_4 (i) \) read \(\vartheta_4 (u) \).
935 8.215 Replace this entry by [7, p. 33],

\[
\text{Ei}(z) = \frac{e^z}{z} \left[\sum_{k=0}^{n} \frac{k!}{z^k} + r_n(z) \right], \quad |r_n(z)| = O(|z|^{-n-1}),
\]

\([z \to \infty, |\arg(-z)| \leq \pi - \delta; \delta > 0 \text{ small}].

935 8.216 Presumably, for \(O(n^0) \) read \(O(1) \);
for \(n \) large read \(n \to \infty \).
937 8.234.1. Delete the comma in the upper limit of the integral.
939 8.252.5. For \(4 \times 2 \) read \(4 \times 2 \).
939 8.254 Replace this entry by [7, p. 19],

\[
\Phi(z) = 1 - \frac{e^{-z^2}}{\sqrt{\pi}z} \left[\sum_{k=0}^{n} (-1)^k \frac{(2k-1)!!}{(2z^2)^k} + O(|z|^{-2n-2}) \right],
\]

\([z \to \infty, |\arg(-z)| \leq \pi - \delta; \delta > 0 \text{ small}].

942 8.310.2. Delete "\(\Gamma(z) \) satisfies the relation".
943 8.315 Add (For \(C \) see 8.310.2.), Delete "for \(z \), not an integer".
944 line 2 Delete.
944 8.315.2. According to [8, p. 81–82], replace this entry by

\[
\int_{-\infty}^\infty \frac{e^{btz}}{(a + it)^2} \, dt = \frac{2\pi e^{-ab}z^{-1}}{\Gamma(z)}
\]

\[
\int_{-\infty}^\infty \frac{e^{-btz}}{(a + it)^2} \, dt = 0
\]

\([\Re a > 0, b > 0, \Re z > 0, |\arg(a + it)| < \frac{1}{2}\pi]\).
946 8.335 For \(n^{mx} \) read \(n^{nx} \).
948 8.341.2. For \(\omega \) read \(w \) in the upper limit of the integral.
949 8.344 For \(\cos L^{2n-1} \) read \(\cos^{2n-1} \).
949 8.350.2. For \(0 \) read \(x \) in the lower limit of the integral.
950 8.352.3. Replace \(\Gamma(0, x) \) by \(-\text{Ei}(-x) \).
952 8.36 There exist a number of important formulas for \(\psi(z) \) and \(\psi^{(n)}(x) \) which are not given. See [3, §§6.3–4].
953 8.363.8. Add \((-1)^{n+1} n! \zeta(n + 1, x) \).
956 8.372.1. For \([-x \in \mathbb{N}] \) read \([-x \not\in \mathbb{N}] \).
956 8.372.2. Add \([-x \not\in \mathbb{N}] \).
956 8.372.3. Add \([-x \not\in \mathbb{N}] \). Add after this formula:
\begin{table}

\begin{tabular}{ll}
\hline
957 & 8.374 \ \beta(x) \text{ has simple poles at } x = -n \text{ with residue } (-1)^n. \\
960 & 8.391 \ \text{For } [-x \in \mathbb{N}] \text{ read } [-x \notin \mathbb{N}]. \text{ Delete the line after this formula.} \\
961 & 8.405 \ \text{For } \frac{x^p}{p^2} F_1 \text{ read } \frac{x^p}{p^2} F_1. \\
961 & 8.411 \text{ line 11} \ \text{Delete "for an arbitrary Bessel function } Z_\nu(z), \text{ that is," in the line after the formula.} \\
961 & 8.4111. \ \text{For } [n- \text{ a natural number}] \text{ read } \{n = 0, 1, 2, \ldots\}. \\
963 & 8.4125. \ \text{Replace } \{\Gamma(\frac{1}{2} - \nu)\}^{-1} \neq 0 \text{ by } \nu \neq \frac{1}{2}, \frac{3}{2}, \ldots. \\
964 & 8.4126. \ \text{Add the drawing.} \\
969 & 8.4326. \ \text{For } z^2 \text{ read } z^2. \\
969 & 8.4327. \ \text{For } -\frac{x}{2} \text{ read } -\frac{x}{2}; \text{ for } |\arg z| = \text{ read } |\arg z| =. \\
970 & 8.4421. \ \text{Delete the two lines after the formula (except WA 174(1)).} \\
970 & 8.4422. \ \text{In the arguments of } F, \text{ for } -\nu, -k; \mu - 1; \text{ read } -\nu - k; \mu + 1; \\
971 & 8.471 \text{ line 5} \ \text{For } K_n \text{ read } K_n. \\
976 & 8.4551. \ \text{Add } [x > n] \text{ in third line.} \\
979 & 8.471 \ \text{Add: } Z \text{ denotes } J, N, H^{(1)}, H^{(2)} \text{ or any linear combination of these functions, the coefficients in which are independent of } z \text{ and } \nu. \\
979 & 8.472 \ \text{ditto.} \\
980 & 8.47610. \ \text{For } H^{(2)}_\nu(z) \text{ read } H^{(2)}_\nu(z). \\
981 & 8.485 \ \text{Read } \sin \nu \pi \text{ in the denominator.} \\
982 & 8.4867. \ \text{For } l_n(z) \text{ read } I_n(z). \\
982 & 8.4868. \ \text{For } l_1(z) \text{ read } I_1(z). \\
982 & 8.4861. - 3. \ \text{Delete the restrictions, they are meaningless.} \\
983 & 8.4864., 5. \ \text{ditto.} \\
986 & 8.4961. \ \text{Presumably, for } \overline{Z}_2(2i\sqrt{z}) \text{ read } \overline{Z}_2(2i\sqrt{z}). \\
987 & 8.4962. \ \text{Presumably, for } \overline{Z}_{\frac{1}{2}}(\frac{3}{2}iz^{\frac{1}{2}}) \text{ read } \overline{Z}_{\frac{1}{2}}(\frac{3}{2}iz^{\frac{1}{2}}). \\
987 & 8.4963. \ \text{Presumably, for } \overline{Z}_{10}(2iz^{-\frac{1}{4}}) \text{ read } Z_{10}(2iz^{-\frac{1}{4}}). \\
1013 & 8.6714. \ \text{Presumably, for } \pi \sqrt{a} \text{ read } \pi \sqrt{a}. \\
1014 & 8.701 \ \text{There is confusion on notation. In the previous edition [6, p. 999], the symbols } P_\nu^m(z), Q_\nu^m(z) \text{ on line} \\
\hline
\end{tabular}
\end{table}
5 were said to denote single-valued and regular solutions of $8.700 1.$ for $|z| < 1$, whereas the symbols $P^p(z), Q^p(z)$ on line 8 were said to be used for such solutions with $\text{Re } z > 1$. However, the formulas in 7.1–7.2 of [6] give the impression that the contrary is true. In this volume, the same symbols $P^p(z), Q^p(z)$ are presented on both lines 4 and 6, thus making the lines 4 to 7 unintelligible. The (probably) unnecessary distinction between P, Q and P, Q remains in other places, in particular in 7.1–7.2, but no detailed check has been made whether these notations are consistent within any definition.

1032 8.811 For equation read representation.
1045 8.913 2. For simple read closed.
1065 9.100 Add “also called Gaussian hypergeometric function.”
1071 9.137 For functions read formulas.
1073 9.153 4. For $F(1 + m', -m)$ read $F(1 + m' - m)$.
1075 line 1–12 For “the pair, unity” read one.
1080 9.180 1–4. Delete “Region of convergence” before the formula; place the restrictions (in []) on the line of the formula.
1083 9.183 3. For $(-y)^\beta$ read $(-y)^{ -\beta}$ in second line [11, No. 7.2.4.39].
1088 9.227 For $\pi - \alpha < 0$ read $\pi - \alpha < \pi$.
1095 9.255 3. For z^2 read z^2.
1096 9.301 For b_1, \ldots, b_2 read b_1, \ldots, b_q.
1096 line 1–1 Delete the comma after $p < q$.
1097 9.303–4 Delete *).
1099 9.34 7. For $(a, b : c : -x)$ read $(a, b ; c ; -x)$.
1100 9.5 Mixing the Riemann zeta function $\zeta(z)$ and the generalized zeta function $\zeta(z, q)$ in this section is unfortunate. In particular, it is unusual to extend the name of Riemann to $\zeta(z, q)$. This function has little in common with $\zeta(z)$ other than $\zeta(z) = \zeta(z, 1)$ and $(2^z - 1)\zeta(z) = \zeta(z, \frac{1}{2})$.

1102 9.523 1. Replace this formula by

$$\zeta(z) = \prod_p \frac{1}{1 - p^{-z}} \quad [\text{Re } z > 1].$$

1102 9.523 3. For Δ read Λ in the formula and in the line after it; add $[\text{Re } z > 1]$ in the formula, delete it in the line.
1103 9.537 The separate entries 9.537 and 9.561, 9.562 on p. 1105 are confusing. They should be combined to read

9.537 1. $\zeta(z) = \pi^{ - \frac{1}{2} } (z - 1) \Gamma(\frac{1}{2} z + 1) \zeta(z) = \zeta(1 - z)$.
9.537 2. $\Xi(t) = \xi \left(\frac{1}{2} + it \right) = \Xi(-t)$.
TABLE ERRATA

1103 9.541 1. Delete the line after 9.537.
For $\zeta(z, q)$ read $\zeta(z)$.
1103 9.541 2., 3. For $0 \leq \text{Re} z \leq 1$ read $0 < \text{Re} z < 1$.
1103 9.541 3. It would be interesting to insert a remark that the first 1,500,000,001 zeros lying in
0 < Im z < 545,439,823.215 are known [13] to have $\text{Re} z = \frac{1}{2}$.

1105 9.56 Delete the whole section (see p. 1103, 9.537 above).
1106 9.617 For $B_{2n}(-1)^{n-1}$ read $B_{2n} = (-1)^{n-1}$; for $\prod_{p=2}^{\infty}$
read $\prod p$.
1109 9.64 For $\nu(Sx)$ read $\nu(x)$.
1110 9.71 This table of the Bernoulli numbers should be re-ar-
ranged properly.
1111 line $l - 6$ Insert $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)^2}$ before the numerical value.
1112 9.742 1. Add $S^{(0)}(n) = \delta_{0n}$; $S^{(1)}(n) = (-1)^{n-1}(n - 1)!$; $S^{(n)}(n) = 1$.
1112 9.743 1. Add $G^{(0)}(n) = \delta_{0n}$; $G^{(1)}(n) = G^{(n)}(n) = 1$.
1113 9.744 In the headline of the table, for s read S; in the
column for $S_q^{(m)}$: for 118121 read 118124.
1127 line $l - 2$ For $2\text{Im} z$ read $2i\text{Im} z$.
1128 line 2 For $\bar{1}$ read 1.
1136 13.123–5 For A^\dagger read A^\dagger (5 times).
1138 13.214 For $x \neq 0$ read $x \neq 0$ (twice); for $Q(x)$ read $Q(x)$.
1139 13.41 For e^{Az} read e^{Az} (twice).
1140 13.411 1. For e^{lz} read e^{lz}.
1141 14.12 For “when the following results” read “then the fol-
lowing statements”.
1177 17.121. For $F(s) + G(s)$ read $aF(s) + bG(s)$.
1178 17.123. For $d\zeta$ read $d\zeta$.
1178 17.133. For x^ν, $\nu > -1$ read x^ν, $\text{Re} \nu > -1$.
1178 17.134. For $(\sqrt{x^2})^{(n+\frac{1}{2})}$ read $\Gamma(n + \frac{1}{2})$.
1179 17.1239. Here and in other cases, e.g., p. 1188, 17.33.18,
p. 1191, 17.34.13, only the simplest special case
is taken from the source. There, the result for
$x^n \sin ax$ is given.
1181 17.1380. For $bv \text{Re} a$ read $|\text{Re} a|$.
1182 17.13101. Replace the right-hand side by
$s^{-1}(s + a^2)^{-\frac{1}{2}}[(s + a^2)^{-\frac{1}{2}} - a]$.
1182 17.13103. Move the restriction on $\text{Re} \nu$ to the left column.
(Also in other formulas on this page.)
1182 17.13111. For $x^{-(\nu+1)}$ read $x^{\nu+1}$.
1184 17.232. For $|x|$ read x.
1184 17.234. Replace $\delta(x - a)$, a real by $\delta(ax + b)$, $a, b \in \mathbb{R}$,
$a \neq 0$; replace $e^{-a\zeta}$ by $e^{-b\zeta/a}$.
1184 17.236. The Fourier transform of $1/|x|$ leads to a divergent
integral. Delete.
TABLE ERRATA

1184 17.23.8. For Re a read a \(\in \mathbb{R} \).
1184 17.23.10. Delete \(\xi > 0 \).
1185 17.23.15. For \(i(\pi/2)^{1/4}e^{-\xi a} \) read \(i \text{ sgn} \xi (\pi/2)^{1/4}e^{-a|\xi|} \).
1185 17.23.23. For \((2/\pi^3) \) read \((2\pi^3) \).
1185 17.23.24. For \(x^\nu \text{ sgn} x \), \(\nu < -1 \) but not integral read \(x^n \text{ sgn} x \), \(n = 1, 2, \ldots \); for \((-i\xi)^{-(1+\nu)} \nu! \) read \(n!(-i\xi)^{-n-1} \). ([12, p. 506])
1185 17.23.25. Replace the formula in the right-hand column by \((2/\pi)^{1/4} \Gamma(\nu+1)|\xi|^{-\nu-1} \cos[\pi(\nu+1)/2] \). ([12, p. 506])
1185 17.23.26. For \((2n) \) read \((2n^3) \).
1188 17.33. In all the headings of this table (pp. 1188-1190), insert \(\xi > 0 \) after \(F_\xi(\xi) \); delete \(\xi > 0 \) elsewhere in the table.
1188 17.33.11. According to [9, No. 2.5.9.11]: For \((x^2 + a^2)^{\nu-t} \) read \((x^2 + a^2)^{-\nu} \); replace the right-hand side by \[\frac{\xi^{\nu+1}}{\sqrt{2}(2a)^\nu \Gamma(\nu + \frac{3}{2} \xi)}. \]
1189 17.33.13. For \((2\pi)^{-1/4} \) read \(\sqrt{\pi/8} \).
1189 17.33.33. For \((2\pi)^{-1/4} \) read \((2\pi)^{1/4} \); for \(\sinh(a\xi) \) read \(\sinh(a\xi)/\xi \).
1190 17.33.40. For \(K_0(ab) \) read \(K_0(ab)/b \).
1190 17.34. In all the headings of this table (pp. 1190-1193), insert \(\xi > 0 \) after \(F_\xi(\xi) \); delete \(\xi > 0 \) elsewhere in the table.
1191 17.34.6. For \(0 < \nu < 1 \) read \(0 < \text{Re} \nu < 1 \).
1191 17.34.14. For \(\text{Re} \nu > a \) read \(\text{Re} \nu > 0 \).
1191 17.34.16. For \(|a|^{-1} \) read \(a^{-1} \).
1192 17.34.21. For \(\xi > 2a \) read \(\xi < 2a \).
1192 17.34.22. For \(\alpha > 0 \), \(\text{Re} \beta > 0 \) read \(a > 0 \), \(\text{Re} b > 0 \).
1192 17.34.24. For \((x^2 + a^2)^{1/4} \) read \((x^2 + a^2)^{-1/4} \).
1193 17.34.33. For \((e^{-b^2} - e^{-a^2}) \) read \((e^{-b^2} - e^{-a^2})/\xi \).
1195 17.43.8-11. Presumably, \(H(1-x) \) is the Heaviside step function.
1197 17.43.27. For \(\Gamma(s) \) read \((1 - 2^{2-s})\Gamma(s) \); for \(\text{Re} s > 2 \) read \(\text{Re} s > 0 \).
1198 BU There exists an English edition; see [5]. Also p. 1202, line 7 and p. 1203, line 18.
1202 line 2 For Losch read Lösch.
1202 line 3 For Neilsen read Nielsen.

Acknowledgment. I am indebted to Dr. G. Dôme (CERN) for pointing out some errors in [6].

K. S. KöLBIG