Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Numerical schemes for conservation laws via Hamilton-Jacobi equations

Authors: L. Corrias, M. Falcone and R. Natalini
Journal: Math. Comp. 64 (1995), 555-580, S13
MSC: Primary 49L25; Secondary 35L65, 49M25, 65K10
MathSciNet review: 1265013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present some difference approximation schemes which converge to the entropy solution of a scalar conservation law having a convex flux. The numerical methods described here take their origin from approximation schemes for Hamilton-Jacobi-Bellman equations related to optimal control problems and exhibit several interesting features: the convergence result still holds for quite arbitrary time steps, the main assumption for convergence can be interpreted as a discrete analogue of Oleinik's entropy condition, numerical diffusion around the shocks is very limited. Some tests are included in order to compare the performances of these methods with other classical methods (Godunov, TVD).

References [Enhancements On Off] (What's this?)

  • [1] M. Bardi and L. Evans, On Hopf's formulas for solutions of Hamilton-Jacobi equations, Nonlinear Anal. TMA 8 (1984), 1373-1381. MR 764917 (85k:35043)
  • [2] M. Bardi, M. Falcone, and P. Soravia, Fully discrete schemes for the value function of pursuit-evasion games, Advances in Dynamic Games and Applications (T. Basar and A. Haurie, eds.), Birkhäuser, 1994, pp. 89-105. MR 1273550 (95a:90229)
  • [3] Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes, C.R. Acad. Sci. Paris Ser. I 308 (1989), 587-589. MR 1001813 (90f:65242)
  • [4] V. Caselles, Scalar conservation laws and Hamilton-Jacobi equations in one-space variables, Nonlinear Anal. TMA 18 (1992), 461-469. MR 1152721 (93b:35084)
  • [5] L. Corrias, Transformées de Legendre-Frenchel discrètes et applications, Memoire de D.E.A., Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 1992.
  • [6] M. G. Crandall, H. Ishi, and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. MR 1118699 (92j:35050)
  • [7] M. G. Crandall, L. Evans, and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502. MR 732102 (86a:35031)
  • [8] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. MR 690039 (85g:35029)
  • [9] -, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43 (1984), 1-19. MR 744921 (86j:65121)
  • [10] M. Falcone, A numerical approach to the infinite horizon problem, Appl. Math. Optim. 15 (1987), 1-13 and 23 (1991), 213-214. MR 866164 (88c:49025)
  • [11] M. Falcone and T. Giorgi, An approximation scheme for evolutive Hamilton-Jacobi equations, preprint, 1994. MR 1702966 (2000f:49028)
  • [12] A. Harten, On a large time-step high resolution scheme, Math. Comp. 46 (1986), 379-400. MR 829615 (87f:65099)
  • [13] -, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), 357-393. MR 701178 (84g:65115)
  • [14] E. Hopf, Generalized solutions of non-linear equations of first order, J. Math. Mech. 14 (1965), 951-973. MR 0182790 (32:272)
  • [15] S. N. Kružkov, First order quasilinear equations in independent variables, Mat. Sb. 81 (1970), 228-255; English transl. in Math. USSR-Sb. 10 (1970), 217-243.
  • [16] -, The Cauchy problem in the large for certain non-linear first order differential equations, Dokl. Akad. Nauk SSSR 132 (1960); English transl. in Soviet Math. Dokl. 1 (1960), 474-477. MR 0121575 (22:12311)
  • [17] -, The method of finite differences for a first-order non-linear equation with many independent variables, Zh. Vychisl. Mat. i Mat. Fiz. 5 (1966), 884-894.
  • [18] -, The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Dokl. Akad. Nauk SSSR 155 (1964); English transl. in Soviet Math. Dokl. 5 (1964), 493-496.
  • [19] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Regional Conf. Series, Lectures in Applied Math., vol. 11, 1970, pp. 1-47. MR 0350216 (50:2709)
  • [20] R. J. LeVeque, A large time step generalization of Godunov's method for systems of conservation laws, SIAM J. Numer. Anal. 22 (1985), 1051-1073. MR 811183 (88a:65095)
  • [21] P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982. MR 667669 (84a:49038)
  • [22] P. L. Lions and P. E. Souganidis, Convergence of MUSCL type methods for scalar conservation laws, C.R. Acad. Sci. Paris Ser. I 311 (1990), 259-264. MR 1071622 (91i:65168)
  • [23] O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Uspekhi Mat. Nauk 14 (1959), 165-170; English transl. in Amer. Math. Soc. Transl. (2) 33 (1963), 285-290. MR 0117408 (22:8187)
  • [24] S. Osher, Riemann solvers, the entropy condition and difference approximation, SIAM J. Numer. Anal. 21 (1984), 217-235. MR 736327 (86d:65119)
  • [25] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12-49. MR 965860 (89h:80012)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 49L25, 35L65, 49M25, 65K10

Retrieve articles in all journals with MSC: 49L25, 35L65, 49M25, 65K10

Additional Information

Keywords: Difference approximation, conservation laws, entropy solutions, Hamilton-Jacobi equations
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society