Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A posteriori error estimates for boundary element methods

Authors: Carsten Carstensen and Ernst P. Stephan
Journal: Math. Comp. 64 (1995), 483-500
MSC: Primary 65N38
MathSciNet review: 1277764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with a general framework for a posteriori error estimates in boundary element methods which is specified for three examples, namely Symm's integral equation, an integral equation with a hypersingular operator, and a boundary integral equation for a transmission problem. Based on these estimates, an analog of Eriksson and Johnson's adaptive finite element method is proposed for the h-version of the Galerkin boundary element method for integral equations of the first kind. The efficiency of the approach is shown by numerical experiments which yield almost optimal convergence rates even in the presence of singularities.

References [Enhancements On Off] (What's this?)

  • [1] M. Asadzadeh and K. Eriksson, An adaptive finite element method for a potential problem, Preprint.
  • [2] J. Bergh and J. Löfström, Interpolation spaces, Springer, Berlin, 1976.
  • [3] I. Babuška and A. Miller, A posteriori error estimates and adaptive techniques for the finite element method, Tech. Note BN-968, Institute for Physical Science and Technology, Univ. of Maryland, College Park, MD, 1981.
  • [4] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal. 19 (1988), 613-626. MR 937473 (89h:35090)
  • [5] M. Costabel and E.P. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation, Appl. Anal. 16 (1983), 205-228. MR 712733 (84j:31007)
  • [6] -, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Banach Center Publ. 15 (1985), 175-251. MR 874845 (88f:35037)
  • [7] -, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), 367-413. MR 782799 (86f:76045)
  • [8] C. Carstensen and E.P. Stephan, Adaptive boundary element methods for some first kind integral equations, SIAM J. Numer. Anal, (to appear). MR 1427458 (97m:65238)
  • [9] -, Adaptive boundary element methods for transmission problems, Preprint, 1993.
  • [10] K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988), 361-383. MR 929542 (89c:65119)
  • [11] -, Adaptive finite element methods for parabolic problems I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. MR 1083324 (91m:65274)
  • [12] V. Ervin and E.P. Stephan, A boundary element Galerkin method for a hypersingular integral equation on open surfaces, Math. Methods Appl. Sci. 13 (1990), 281-289. MR 1074091 (91k:65157)
  • [13] V. Ervin, N. Heuer, and E.P. Stephan, On the h-p version of the boundary element method for Symm 's integral equation on polygons, Comput. Methods Appl. Mech. Engrg. 110 (1993), 25-38. MR 1255010 (95f:65227)
  • [14] L. Hörmander, Linear partial differential operators., Springer-Verlag, Berlin-Heidelberg-New York, 1963.
  • [15] C. Johnson and P. Hansbo, Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg. 101 (1992), 143-181. MR 1195583 (93m:65157)
  • [16] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0350177 (50:2670)
  • [17] J.C. Nedelec, La méthode des éléments finis appliquée aux équations intégrales de la physique, First meeting AFCET-SMF on applied mathematics Palaiseau, Vol. 1, 1978, pp. 181-190.
  • [18] F.V. Postell and E.P. Stephan, On the h-, p- and h-p versions of the boundary element method--numerical results, Comput. Methods Appl. Mech. Engrg. 83 (1990), 69-89. MR 1078696
  • [19] E. Rank, Adaptive boundary element methods, Boundary Elements 9, Vol. 1 (C.A. Brebbia, W.L. Wendland, and G. Kuhn, eds.), Springer-Verlag, Heidelberg, 1987, pp. 259-273. MR 965323
  • [20] W. Rudin, Functional analysis, TATA MacGraw-Hill, 1973. MR 1157815 (92k:46001)
  • [21] J. Saranen and W.L. Wendland, Local residual-type error estimates for adaptive boundary element methods on closed curves, Applicable Anal. 48 (1993), 37-50. MR 1278122 (95e:65112)
  • [22] I.H. Sloan and A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: Theory, IMA J. Numer. Anal. 8 (1988), 105-122. MR 967846 (90d:65230a)
  • [23] E.P. Stephan, Boundary integral equations for screen problems in $ {\mathbb{R}^3}$, Integral Equations Operator Theory 10 (1987), 236-257. MR 878247 (88a:35059)
  • [24] W.L. Wendland and De-hao Yu, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math. 53 (1988), 539-558. MR 954769 (89h:65194)
  • [25] -, A posteriori local error estimates of boundary element methods with some pseudodifferential equations on closed curves, J. Comput. Math. 10 (1992), 273-289. MR 1167929 (93d:65105)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N38

Retrieve articles in all journals with MSC: 65N38

Additional Information

Keywords: A posteriori error estimates, boundary element methods, adaptive boundary element methods
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society