Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Stability of rational multistep approximations of holomorphic semigroups


Author: C. Palencia
Journal: Math. Comp. 64 (1995), 591-599
MSC: Primary 65J10; Secondary 34G10, 47D06, 65M12
DOI: https://doi.org/10.1090/S0025-5718-1995-1277770-2
MathSciNet review: 1277770
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the stability of semidiscretizations in time of holomorphic semigroups in Banach spaces by means of $ {\text{A}}(\alpha )$-stable rational multistep methods. No assumptions on the method other than $ {\text{A}}(\alpha )$-stability are required. Our result is applicable in the maximum norm analysis of parabolic problems.


References [Enhancements On Off] (What's this?)

  • [1] P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694. MR 537280 (80j:47052)
  • [2] M. Crouzeix, On multistep approximation of semigroups in Banach spaces, J. Comput. Appl. Math. 20 (1987), 25-35. MR 920377 (88j:65135)
  • [3] M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), 74-84. MR 1326004 (96f:65069)
  • [4] M. Crouzeix and P.-A. Raviart, Approximation d'équations d'évolution linéaires par des méthodes multipas, Publ. Analyse Numérique et Mécanique, Université Rennes I, 1976.
  • [5] G. Dahlquist, H. Mingyou, and R. LeVeque, On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods, Numer. Math. 42 (1983), 1-13. MR 716470 (85a:65103)
  • [6] H. O. Fattorini, The Cauchy problem, Addison-Wesley, Reading, MA, 1983. MR 692768 (84g:34003)
  • [7] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I, Springer-Verlag, Berlin, 1987. MR 868663 (87m:65005)
  • [8] E. Hairer and G. Wanner, Solving ordinary differential equations II, Springer-Verlag, Berlin, 1991. MR 1111480 (92a:65016)
  • [9] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. MR 610244 (83j:35084)
  • [10] R. Hersh and T. Kato, High-accuracy stable difference schemes for well-posed initial value problems, SIAM J. Numer. Anal. 16 (1979), 670-682. MR 537279 (80h:65036)
  • [11] T. Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, New York, 1966. MR 0203473 (34:3324)
  • [12] S. Larsson, V. Thomée, and L. B. Wahlbin, Finite-element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991), 115-142. MR 1089551 (92d:65164)
  • [13] M. N. Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), 919-931. MR 528047 (80f:65101)
  • [14] Ch. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313. MR 1112225 (92h:65145)
  • [15] C. Palencia, A stability result for sectorial operators in Banach spaces, SIAM J. Numer. Anal. 30 (1993), 1373-1384. MR 1239826 (94j:65109)
  • [16] -, On the stability of variable stepsize rational methods for holomorphic semigroups, Math. Comp. 62 (1994), 93-103. MR 1201070 (94c:47066)
  • [17] C. Palencia and B. García-Archilla, Stability of multistep methods for sectorial operators in Banach spaces, Appl. Numer. Math. 12 (1993), 503-520. MR 1232713 (94h:65061)
  • [18] P.-A. Raviart, Multistep method and parabolic equations, Université Paris VI, Laboratoire Analyse Numérique, L. A. 189, 1976.
  • [19] R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Wiley, New York, 1967. MR 0220455 (36:3515)
  • [20] A. F. Ruston, Fredholm theory in Banach spaces, Cambridge Univ. Press, Cambridge, 1986. MR 861275 (89a:47018)
  • [21] J. M. Sanz-Serna and C. Palencia, A general equivalence theorem in the theory of discretization methods, Math. Comp. 45 (1985), 143-152. MR 790648 (86h:65078)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65J10, 34G10, 47D06, 65M12

Retrieve articles in all journals with MSC: 65J10, 34G10, 47D06, 65M12


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1277770-2
Keywords: Parabolic problems, holomorphic semigroups, analytic semigroups, multistep and rational methods, stability, $ {\text{A}}(\alpha )$-stability, maximum norm, Banach spaces
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society