Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The solution of triangularly connected decomposable form equations


Author: N. P. Smart
Journal: Math. Comp. 64 (1995), 819-840
MSC: Primary 11Y50; Secondary 11D41, 11D61
DOI: https://doi.org/10.1090/S0025-5718-1995-1277771-4
MathSciNet review: 1277771
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is given to solve the equations of the title. It generalizes an earlier algorithm to solve discriminant form equations. An application is given to finding curves of genus 2 with good reduction outside a given finite set of primes and Weierstrass points in given number fields.


References [Enhancements On Off] (What's this?)

  • [1] M. Agrawal, J. Coates, D. Hunt, and A.J. van der Poorten, Elliptic curves of conductor 11, Math. Comp. 35 (1980), 991-1002. MR 572871 (81e:10022)
  • [2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. MR 1234835 (94i:11050)
  • [3] J.H. Evertse and K. Győry, Decomposable form equations, New Advances in Transcendence Theory (A. Baker, ed.) Cambridge Univ. Press, 1988, pp. 175-202. MR 971999 (89i:11042)
  • [4] I. Gaál, A. Pethő, and M. Pohst, On the resolution of index form equations in biquadratic number fields I, J. Number Theory 38 (1991), 18-34. MR 1105669 (92g:11031)
  • [5] -, On the resolution of index form equations in biquadratic number fields II, J. Number Theory 38 (1991), 35-51.
  • [6] I. Gaál and N. Schulte, Computing all power integral bases of cubic fields, Math. Comp. 53 (1989), 689-696. MR 979943 (90b:11108)
  • [7] K. Győry, On the greatest prime factors of decomposable forms at integer points, Ann. Acad. Sci. Fenn. Ser. A.I Math. 4 (1978/79), 341-355. MR 565882 (81g:10038)
  • [8] -, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 585-600. MR 552678 (81g:10031)
  • [9] -, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A.I Math. 5 (1980), 3-12. MR 595172 (82e:10028)
  • [10] -, On certain graphs composed of algebraic integers of a number field and their applications I, Publ. Math. Debrecen 27 (1980), 229-242. MR 603996 (82f:12001)
  • [11] -, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Applied Math., Kingston, Canada, 56, 1980.
  • [12] -, On the representation of integers by decomposable forms in several variables, Publ. Math. Debrecen 28 (1981), 89-98. MR 625628 (83b:10017)
  • [13] K. Győry and Z. Papp, Effective estimates for the integer solutions of norm form and discriminant form equations, Publ. Math. Debrecen 25 (1978), 311-325. MR 517016 (80b:10026)
  • [14] R.A. Horn and C.R. Johnson. Matrix analysis, Cambridge Univ. Press, 1985. MR 832183 (87e:15001)
  • [15] S. Lang. Algebraic number theory, Springer-Verlag, New York, 1986. MR 1282723 (95f:11085)
  • [16] A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. MR 682664 (84a:12002)
  • [17] J. R. Merriman and N. P. Smart, The calculation of all algebraic integers of degree 3 with discriminant a product of powers of 2 and 3 only, Publ. Math. Debrecen 43 (1993), 195-205. MR 1269947 (95c:11039)
  • [18] -, Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point, Proc. Cambridge Philos. Soc. 114 (1993), 203-214. MR 1230127 (94h:14031)
  • [19] A. Pethő and B.M.M. de Weger, Products of prime powers in binary recurrence sequences I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1986), 713-727. MR 856715 (87m:11027a)
  • [20] J. Graf v. Schmettow, KANT--a tool for computations in algebraic number fields, Computational Number Theory (A. Pethő, M. Pohst, H.C. Williams, and H.G. Zimmer, eds.), de Gruyter, Berlin, 1991.
  • [21] N.P. Smart, The computer solution of Diophantine equations, Ph.D. thesis, University of Kent at Canterbury, 1992.
  • [22] -, Solving a quartic discriminant form equation, Publ. Math. Debrecen 43 (1993), 29-39. MR 1239385 (94i:11026)
  • [23] N. Tzanakis and B.M.M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. MR 987566 (90c:11018)
  • [24] -, Solving a specific Thue-Mahler equation, Math. Comp. 57 (1991), 799-815. MR 1094961 (92a:11028)
  • [25] -, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), 223-288. MR 1189890 (93k:11025)
  • [26] B.M.M. de Weger, Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), 325-367. MR 901244 (88k:11097)
  • [27] -, Algorithms for Diophantine equations, Centre for Mathematics and Computer Science, Amsterdam, 1989. CWI-Tract. MR 1026936 (90m:11205)
  • [28] -, A hyperelliptic diophantine equation related to imaginary quadratic number fields with class number 2, J. Reine Angew. Math. 427 (1992), 137-156. MR 1162434 (93d:11034)
  • [29] K. R. Yu, Linear forms in p-adic logarithms, Acta. Arith. 53 (1989), 107-186. MR 1027200 (90k:11093)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y50, 11D41, 11D61

Retrieve articles in all journals with MSC: 11Y50, 11D41, 11D61


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1277771-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society