Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Locking effects in the finite element approximation of plate models


Authors: Manil Suri, Ivo Babuška and Christoph Schwab
Journal: Math. Comp. 64 (1995), 461-482
MSC: Primary 65N30; Secondary 65N12, 73K10, 73V05
DOI: https://doi.org/10.1090/S0025-5718-1995-1277772-6
MathSciNet review: 1277772
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the robustness of various standard finite element schemes for a hierarchy of plate models and obtain asymptotic convergence estimates that are uniform in terms of the thickness d. We identify h version schemes that show locking, i.e., for which the asymptotic convergence rate deteriorates as $ d \to 0$, and also show that the p version is free of locking. In order to isolate locking effects from boundary layer effects (which also arise as $ d \to 0$), our analysis is carried out for the periodic case, which is free of boundary layers. We analyze in detail the lowest model of the hierarchy, the well-known Reissner-Mindlin model, and show that the locking and robustness of finite element schemes for higher models of the hierarchy are essentially identical to the Riessner-Mindlin case.


References [Enhancements On Off] (What's this?)

  • [1] D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), 1276-1290. MR 1025088 (91c:65068)
  • [2] I. Babuška and L. Li, The problem of plate modeling: Theoretical and computational results, Comput. Methods Appl. Mech. Engrg. 100 (1992), 249-273.
  • [3] I. Babuška and J. Pitkäranta, The plate paradox for hard and soft simple support, SIAM J. Math. Anal. 21 (1990), 551-576. MR 1046789 (91b:73059)
  • [4] I. Babuška and M. Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal. 29 (1992), 1261-1293. MR 1182731 (94c:65128)
  • [5] -, Locking effects in the finite element approximation of elasticity problems, Numer. Math. 62 (1992), 439-463. MR 1174468 (93i:65108)
  • [6] -, The h-p version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), 199-238. MR 896241 (88d:65154)
  • [7] J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin, 1976.
  • [8] C. de Boor and R. A. DeVore, Approximation by smooth multivariate splines, Trans. Amer. Math. Soc. 276 (1983), 775-788. MR 688977 (84j:41015)
  • [9] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • [10] F. Brezzi, M. Fortin, and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 1 (1991), 125-151. MR 1115287 (92e:73030)
  • [11] S. Jensen, An $ H_0^m$ interpolation result, SIAM J. Math. Anal. 22 (1991), 785-791. MR 1091683 (92c:65117)
  • [12] C. Schwab, The Fourier approach to the asymptotic analysis of plate models, Technical Report 93-4, University of Maryland Baltimore County, Baltimore, MD, 1993.
  • [13] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), 111-143. MR 813691 (87i:65190)
  • [14] -, Conforming finite element methods for incompressible and nearly incompressible continua, Large Scale Computations in Fluid Mechanics, Lectures in Appl. Math., vol. 22, Part 2, Amer. Math. Soc., Providence, RI, 1985, pp. 221-244. MR 818790 (87h:65202)
  • [15] M. Suri, The p version of the finite element method for elliptic equations of order 2l, RAIRO Modél. Math. Anal. Numér. 24 (1990), 265-304. MR 1052150 (91i:65184)
  • [16] M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials, Uniformly valid, optimal error estimates, Numer. Math. 41 (1983), 19-37. MR 696548 (85f:65113a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N12, 73K10, 73V05

Retrieve articles in all journals with MSC: 65N30, 65N12, 73K10, 73V05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1277772-6
Keywords: Reissner-Mindlin, locking, finite element, p version
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society