Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Defect correction for two-point boundary value problems on nonequidistant meshes


Authors: J. C. Butcher, J. R. Cash, G. Moore and R. D. Russell
Journal: Math. Comp. 64 (1995), 629-648
MSC: Primary 65L10; Secondary 65L12
DOI: https://doi.org/10.1090/S0025-5718-1995-1284662-1
MathSciNet review: 1284662
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New finite difference formulae of arbitrary order are derived for the special class of second-order two-point boundary value problems $ y'' = f(x,y(x)), a \leq x \leq b$ . Variable mesh spacing is possible, and the required accuracy is achieved under a very mild mesh condition. A natural defect correction framework is set up to compute the higher-order approximations.


References [Enhancements On Off] (What's this?)

  • [1] U. Ascher, R. Mattheij, and R. D. Russell, Numerical solution of boundary value problems for ODEs, Prentice-Hall, Englewood Cliffs, NJ, 1988. MR 1000177 (90h:65120)
  • [2] U. Ascher, J. Christiansen, and R. D. Russell, Collocation software for boundary value ordinary differential equations, ACM Trans. Math. Software 7 (1981), 209-222.
  • [3] J. W. Barrett, G. Moore, and K. W. Morton, Optimal recovery in the finite element method, Part 2: Defect correction for ordinary differential equations, IMA J. Numer. Anal. 8 (1988), 527-540. MR 975612 (90b:65168)
  • [4] K. Bohmer and H. J. Steuer (eds.), Defect correction methods: Theory and applications, Springer-Verlag, Wien, 1984. MR 782686 (85m:65003)
  • [5] J. R. Cash, Numerical integration of nonlinear two-point boundary value problems using iterated deferred correction-I. A survey and comparison of some one-step formulae, Comput. Math. Appl. 12 (1986), 1029-1048. MR 862027 (87k:65096)
  • [6] -, Numerical integration of nonlinear two-point boundary value problems using iterated deferred correction-II. The development and analysis of highly stable deferred correction formulae, SIAM J. Numer. Anal. 25 (1988), 862-882. MR 954789 (89g:65099)
  • [7] -, Adaptive Runge-Kutta methods for nonlinear two-point boundary value problems with mild boundary layers, Comput. Math. Appl. 12 (1985), 605-620. MR 795498 (86k:65061)
  • [8] -, High order P-stable formulae for the numerical integration of periodic initial value problems, Numer. Math. 37 (1981), 355-370. MR 627110 (82j:65044)
  • [9] J. R. Cash and A. Singhal, Mono-implicit Runge-Kutta formulae for the numerical integration of stiff differential equations, IMA J. Numer. Anal. 2 (1982), 211-227. MR 668593 (83m:65053)
  • [10] -, High order methods for the numerical solution of two-point boundary value problems, BIT 22 (1986), 184-199. MR 672130 (83m:65062)
  • [11] J. R. Cash and M. H. Wright, A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation, AT&T Bell Laboratories, Comput. Sci. Report No. 146, Murray Hills, NJ, 1989.
  • [12] M. M. Chawla, A sixth order tri-diagonal finite difference method for nonlinear two-point boundary value problems, BIT 17 (1977), 128-133. MR 0471328 (57:11063)
  • [13] -, An eighth order tri-diagonal finite difference method for nonlinear two-point boundary value problems, BIT 17 (1977), 281-285. MR 0483477 (58:3478)
  • [14] J. W. Daniel and A. J. Martin, Numerov's method with deferred corrections for two-point boundary value problems, SIAM J. Numer. Anal. 14 (1977), 1033-1050. MR 0464599 (57:4526)
  • [15] C. R. Doering, J. D. Gibbon, D. D. Holm, and B. Nicolaenko, Low dimensional behaviour in the complex Ginzburg-Landau equation, Nonlinearity 1 (1988), 279-309. MR 937004 (89g:35095)
  • [16] R. D. Grigorieff, On stability constants and condition number of discretization methods, Report No. 149, Technische Universität Berlin, 1986.
  • [17] P. Henrici, Discrete variable methods in ordinary differential equations, Wiley, New York, 1962. MR 0135729 (24:B1772)
  • [18] M. S. Jolly, Explicit construction of an inertial manifold for a reaction diffusion equation, J. Differential Equations 78 (1989), 220-261. MR 992147 (90j:35118)
  • [19] H. O. Kreiss, Difference approximations for boundary and eigenvalue problems for ODEs, Math. Comp. 26 (1972), 605-624. MR 0373296 (51:9496)
  • [20] H. O. Kreiss, T. A. Manteuffel, B. Swartz, B. Wendroff, and A. B. White, Supra-convergent schemes on irregular grids, Math. Comp. 47 (1986), 537-554. MR 856701 (88b:65082)
  • [21] M. Lentini and V. Pereyra, A variable order finite difference method for nonlinear multi-point boundary value problems, Math. Comp. 28 (1974), 981-1004. MR 0386281 (52:7139)
  • [22] -, An adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layers, SIAM J. Numer. Anal. 14 (1977), 91-111. MR 0455420 (56:13658)
  • [23] T. A. Manteuffel and A. B. White, The numerical solution of second-order boundary value problems on nonuniform meshes, Math. Comp. 47 (1986), 511-535. MR 856700 (87m:65116)
  • [24] G. Moore, Defect correction from a Galerkin viewpoint, Numer. Math. 52 (1988), 565-582. MR 945100 (89e:65084)
  • [25] V. Pereyra, PASVA3: An adaptive finite difference FORTRAN program for first order nonlinear, ordinary boundary value problems, Codes for Boundary Value Problems in Ordinary Differential Equations (B. Childs, M. Scott, J. E. Daniel, E. Denman, and P. Nelson, eds.), Springer-Verlag, Berlin, 1979, pp. 67-88.
  • [26] R. D. Skeel, A theoretical framework for proving accuracy results for deferred corrections, SIAM J. Numer. Anal. 19 (1982), 171-196. MR 646602 (83d:65184)
  • [27] R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Statist. Comput. 11 (1990), 1-32. MR 1032224 (91g:65202)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L10, 65L12

Retrieve articles in all journals with MSC: 65L10, 65L12


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1284662-1
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society