On the primality of and

Author:
Chris K. Caldwell

Journal:
Math. Comp. **64** (1995), 889-890

MSC:
Primary 11A41; Secondary 11A51, 11Y11

MathSciNet review:
1284663

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each prime *p* let *p*# be the product of the primes less than or equal to *p*. Using a new type of microcomputer coprocessor, we have found five new primes of the form , two new primes of the form , seven new primes of the form , and greatly extended the search bounds for primes of the form and .

**[1]**Alan Borning,*Some results for 𝑘!±1 and 2⋅3⋅5\cdots𝑝±1*, Math. Comp.**26**(1972), 567–570. MR**0308018**, 10.1090/S0025-5718-1972-0308018-5**[2]**J. P. Buhler, R. E. Crandall, and M. A. Penk,*Primes of the form 𝑛!±1 and 2⋅3⋅5\cdots𝑝±1*, Math. Comp.**38**(1982), no. 158, 639–643. MR**645679**, 10.1090/S0025-5718-1982-0645679-1**[3]**J. Brillhart, D. H. Lehmer, and J. L. Selfridge,*New primality criteria and factorizations of*, Math. Comp.**26**(1972), 567-570.**[4]**H. Dubner,*Factorial and primorial primes*, J. Recreational Math.**19**(1987), 197-203.**[5]**-,*A new primorial prime*, J. Recreational Math.**21**(1989), 276.**[6]**H. Dubner and R. Dubner,*The development of a powerful low-cost computer for number theory applications*, J. Recreational Math.**18**(1985-86), 81-86.**[7]**Mark Templer,*On the primality of 𝑘!+1 and 2∗3 ∗5∗\cdots∗𝑝+1*, Math. Comp.**34**(1980), no. 149, 303–304. MR**551306**, 10.1090/S0025-5718-1980-0551306-2

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41,
11A51,
11Y11

Retrieve articles in all journals with MSC: 11A41, 11A51, 11Y11

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1284663-3

Keywords:
Prime numbers,
factorial primes

Article copyright:
© Copyright 1995
American Mathematical Society