Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A spectral method for the vorticity equation on the surface

Author: Ben Yu Guo
Journal: Math. Comp. 64 (1995), 1067-1079
MSC: Primary 65N35; Secondary 76D05, 76M25
MathSciNet review: 1297463
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A spectral scheme is proposed for the vorticity equation defined on the spherical surface. Generalized stability and convergence are proved. The approximation results in this paper are also useful for other nonlinear problems.

References [Enhancements On Off] (What's this?)

  • [1] J. H. Bramble and J. E. Pasciak, A boundary parametric approximation to the linearized scalar potential magnetostatic field problem, Appl. Numer. Math. 1 (1985), 493-514. MR 814774 (87b:78014)
  • [2] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Springer-Verlag, Berlin, 1988. MR 917480 (89m:76004)
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, Interscience, New York, 1953. MR 0065391 (16:426a)
  • [4] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods, CBMS-NSF, Regional Conference Series in Applied Mathematics, vol. 26, SIAM, Philadelphia, PA, 1977. MR 0520152 (58:24983)
  • [5] Ben-yu Guo, Spectral method for Navier-Stokes equation, Scientia Sinica 28A (1985), 1139-1153. MR 828694 (87h:76040)
  • [6] -, Difference method for partial differential equations, Science Press, Beijing, 1988.
  • [7] Ben-yu Guo and He-ping Ma, Strict error estimation for a spectral method of compressible fluid flow, Calcolo 24 (1987), 263-282. MR 1004522 (90f:76009)
  • [8] Ben-yu Guo, He-ping Ma, Wei-ming Cao, and Hui Huang, The Fourier-Chebyshev spectral method for solving two-dimensional unsteady vorticity equation, J. Comput. Phys. 101 (1992), 207-217. MR 1173346 (93d:76048)
  • [9] G. J. Haltiner, Numerical prediction, Wiley, New York, 1971.
  • [10] G. J. Haltiner and R. T. Williams, Numerical prediction and dynamical meteorology, Wiley, New York, 1980.
  • [11] M. Jarraud and A. P. M. Baede, The use of spectral techniques in numerical weather prediction, Large-Scale Computation in Fluid Mechanics, Lectures in Appl. Math., vol. 22, Amer. Math. Soc., Providence, RI, 1985, pp. 1-41. MR 818778 (87b:86003)
  • [12] H. O. Kreiss and J. Oliger, Stability of the Fourier method, SIAM J. Numer. Anal. 16 (1979), 421-433. MR 530479 (80i:65130)
  • [13] Pen-yu Kuo, The convergence of spectral scheme for solving two-dimensional vorticity equation, J. Comput. Math. 1 (1983), 353-362. MR 838695 (87f:35216)
  • [14] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
  • [15] J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, Vol. 1, Springer-Verlag, Berlin, 1972.
  • [16] Y. Maday and A. Quarteroni, Spectral and pseudospectral approximation of the Navier-Stokes equation, SIAM J. Numer. Anal. 19 (1982), 761-780. MR 664883 (83g:76017)
  • [17] J. E. Pasciak, Spectral methods for a nonlinear initial value problem involving pseudodifferential operators, SIAM J. Numer. Anal. 19 (1982), 142-154. MR 646600 (83a:65091)
  • [18] R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience, New York, 1967. MR 0220455 (36:3515)
  • [19] Qingcun Zen, Physical-mathematical basis of numerical prediction, Vol. 1, Science Press, Beijing, 1979.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N35, 76D05, 76M25

Retrieve articles in all journals with MSC: 65N35, 76D05, 76M25

Additional Information

Keywords: Vorticity equation, spherical surface, spectral method, approximation theory
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society