Twenty-two primes in arithmetic progression

Authors:
Paul A. Pritchard, Andrew Moran and Anthony Thyssen

Journal:
Math. Comp. **64** (1995), 1337-1339

MSC:
Primary 11A41; Secondary 11Y11

MathSciNet review:
1297475

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some newly-discovered arithmetic progressions of primes are presented, including five of length twenty-one and one of length twenty-two.

**[1]**Emil Grosswald,*Arithmetic progressions that consist only of primes*, J. Number Theory**14**(1982), no. 1, 9–31. MR**644898**, 10.1016/0022-314X(82)90055-5**[2]**Richard K. Guy,*Unsolved problems in number theory*, Unsolved Problems in Intuitive Mathematics, vol. 1, Springer-Verlag, New York-Berlin, 1981. Problem Books in Mathematics. MR**656313****[3]**Richard K. Guy,*Canadian Number Theory Association unsolved problems 1988*, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 193–206. MR**1106661****[4]**A. Moran and P. A. Pritchard,*The design of a background job on a local-area network*, Proceedings 14th Australian Computer Science Conference (G. Gupta, ed.), Australian Computer Science Communications**13**(1991), 17-1-17-11.**[5]**Paul A. Pritchard,*A case study of number-theoretic computation: searching for primes in arithmetic progression*, Sci. Comput. Programming**3**(1983), no. 1, 37–63. MR**730934**, 10.1016/0167-6423(83)90003-5**[6]**Paul A. Pritchard,*Long arithmetic progressions of primes: some old, some new*, Math. Comp.**45**(1985), no. 171, 263–267. MR**790659**, 10.1090/S0025-5718-1985-0790659-1

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41,
11Y11

Retrieve articles in all journals with MSC: 11A41, 11Y11

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1995-1297475-1

Article copyright:
© Copyright 1995
American Mathematical Society