Twenty-two primes in arithmetic progression

Authors:
Paul A. Pritchard, Andrew Moran and Anthony Thyssen

Journal:
Math. Comp. **64** (1995), 1337-1339

MSC:
Primary 11A41; Secondary 11Y11

DOI:
https://doi.org/10.1090/S0025-5718-1995-1297475-1

MathSciNet review:
1297475

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some newly-discovered arithmetic progressions of primes are presented, including five of length twenty-one and one of length twenty-two.

**[1]**E. Grosswald,*Arithmetic progressions that consist only of primes*, J. Number Theory**14**(1982), 9-31. MR**644898 (83k:10081)****[2]**R. K. Guy,*Unsolved problems in number theory*, Springer-Verlag, New York, 1981. MR**656313 (83k:10002)****[3]**-,*Canadian number theory association unsolved problems*1988, Number Theory (R. A. Mollin, ed.), de Gruyter, Berlin, 1990, pp. 193-206. MR**1106661 (92g:11002)****[4]**A. Moran and P. A. Pritchard,*The design of a background job on a local-area network*, Proceedings 14th Australian Computer Science Conference (G. Gupta, ed.), Australian Computer Science Communications**13**(1991), 17-1-17-11.**[5]**P. A. Pritchard,*A case study of number-theoretic computation*:*searching for primes in arithmetic progression*, Sci. Comput. Programming**3**(1983), 37-63. MR**730934 (85g:11119)****[6]**-,*Long arithmetic progressions of primes*:*some old, some new*, Math. Comp.**45**(1985), 263-267. MR**790659 (86h:11013)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41,
11Y11

Retrieve articles in all journals with MSC: 11A41, 11Y11

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1297475-1

Article copyright:
© Copyright 1995
American Mathematical Society