Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of continued fractions without input values


Author: P. Shiu
Journal: Math. Comp. 64 (1995), 1307-1317
MSC: Primary 11Y65; Secondary 11A55, 11K50
DOI: https://doi.org/10.1090/S0025-5718-1995-1297479-9
MathSciNet review: 1297479
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm for the computation of the continued fraction expansions of numbers which are zeros of differentiable functions is given. The method is direct in the sense that it requires function evaluations at appropriate steps, rather than the value of the number as input in order to deliver the expansion. Statistical data on the first 10000 partial quotients for various real numbers are also given.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987. MR 877728 (89a:11134)
  • [2] J. W. S. Cassels, An introduction to Diophantine approximations, Cambridge Tract 45, Cambridge Univ. Press, Cambridge, 1957. MR 0087708 (19:396h)
  • [3] K. Y. Choong, D. E. Daykin, and C. R. Rathbone, Rational approximations to $ \pi $, Math. Comp. 25 (1971), 387-392. MR 0300981 (46:141)
  • [4] M. Hall, Jr., On the sum and product of continued fractions, Ann. of Math. (2) 48 (1947), 966-993. MR 0022568 (9:226b)
  • [5] A. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361-382. MR 1556899
  • [6] -, Zur metrischen Kettenbruchtheorie, Compositio Math. 3 (1936), 276-285. MR 1556944
  • [7] J. H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Hist, de l'Acad. Roy. de Sci. et des Belles Lettres de Berlin, Année 1761 (1768), pp. 265-322.
  • [8] R. S. Lehman, A study of regular continued fractions, BRL Report 1066, Aberdeen Proving Ground, Maryland, February 1959.
  • [9] D. H. Lehmer, Euclid's algorithm for large numbers, Amer. Math. Monthly 45 (1938), 227-233. MR 1524250
  • [10] -, Note on an absolute constant of Khintchine, Amer. Math. Monthly 46 (1939), 148-152. MR 1524526
  • [11] P. Lévy, Sur le développement en fraction continue, Compositio Math. 3 (1936), 286-303. MR 1556945
  • [12] G. Lochs, Die ersten 968 Kettenbruchnenner von $ \pi $, Monatsh. Math. 67 (1963), 311-316. MR 0158507 (28:1730)
  • [13] A. J. van der Poorten, An introduction to continued fractions, Diophantine Analysis (J. H. Loxton and A. J. van der Poorten, eds.), Cambridge Univ. Press, Cambridge, 1986, pp. 99-138. MR 874123 (88d:11006)
  • [14] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250. MR 1149740 (93a:11008)
  • [15] G. N. Raney, On continued fractions and finite automata, Math. Ann. 206 (1973), 265-283. MR 0340166 (49:4922)
  • [16] H. Riesel, Prime numbers and computer methods for factorization, Birkhäuser, Boston, 1985. MR 897531 (88k:11002)
  • [17] J. Wallis, A treatise of algebra, London, 1685, pp. 46-55.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y65, 11A55, 11K50

Retrieve articles in all journals with MSC: 11Y65, 11A55, 11K50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1297479-9
Keywords: Direct algorithm, partial quotients, Khintchine's constant
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society