Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Maximum-angle condition and triangular finite elements of Hermite type

Author: Alexander Ženíšek
Journal: Math. Comp. 64 (1995), 929-941
MSC: Primary 65N30; Secondary 65D99
MathSciNet review: 1297481
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various triangular finite $ {C^0}$-elements of Hermite type satisfying the maximum-angle condition are presented and corresponding finite element interpolation theorems are proved. The paper contains also a proof that very general hypotheses due to Jamet are not necessary for such finite elements.

References [Enhancements On Off] (What's this?)

  • [1] T. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element method, Computing 47 (1992), no. 3-4, 277–293 (English, with German summary). MR 1155498, 10.1007/BF02320197
  • [2] I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214–226. MR 0455462
  • [3] Robert E. Barnhill and John A. Gregory, Sard kernel theorems on triangular domains with application to finite element error bounds, Numer. Math. 25 (1975/76), no. 3, 215–229. MR 0458000
  • [4] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 0282540, 10.1090/S0025-5718-1970-0282540-0
  • [5] John A. Gregory, Error bounds for linear interpolation on triangles, The mathematics of finite elements and applications, II (Proc. Second Brunel Univ. Conf. Inst. Math. Appl., Uxbridge, 1975) Academic Press, London, 1976, pp. 163–170. MR 0458795
  • [6] Pierre Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 10 (1976), no. R-1, 43–60 (French, with Loose English summary). MR 0455282
  • [7] S. Koukal, Piecewise polynomial interpolations and their applications in partial differential equations, Sborník VAAZ Brno (1970), 29-30. (Czech)
  • [8] Stanislav Koukal, Piecewise polynomial interpolations in the finite element method, Apl. Mat. 18 (1973), 146–160 (English, with Czech summary). MR 0321318
  • [9] Michal Křížek, On semiregular families of triangulations and linear interpolation, Appl. Math. 36 (1991), no. 3, 223–232 (English, with Czech summary). MR 1109126
  • [10] A. Kufner, O. John, and S. Fučík, Function spaces, Academia, Prague, 1977.
  • [11] J. L. Synge, The hypercircle in mathematical physics: a method for the approximate solution of boundary value problems, Cambridge University Press, New York, 1957. MR 0097605
  • [12] Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283–296. MR 0275014
  • [13] A. Ženíšek, Nonlinear elliptic and evolution problems and their finite element approximations, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1990. With a foreword by P.-A. Raviart. MR 1086876
  • [14] M. Zlámal, On the finite element method, Numer. Math. 12 (1968), 394-409.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65D99

Retrieve articles in all journals with MSC: 65N30, 65D99

Additional Information

Keywords: Triangular finite elements of Hermite type, maximum- and minimum-angle conditions, finite element interpolation theorems
Article copyright: © Copyright 1995 American Mathematical Society