Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A mixed finite element method for a strongly nonlinear second-order elliptic problem


Authors: F. A. Milner and E.-J. Park
Journal: Math. Comp. 64 (1995), 973-988
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1995-1303087-3
MathSciNet review: 1303087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The approximation of the solution of the first boundary value problem for a strongly nonlinear second-order elliptic problem in divergence form by the mixed finite element method is considered. Existence and uniqueness of the approximation are proved and optimal error estimates in $ {L^2}$ are established for both the scalar and vector functions approximated by the method. Error estimates are also derived in $ {L^q},2 \leq q \leq + \infty $.


References [Enhancements On Off] (What's this?)

  • [1] F. Brezzi, J. Douglas, Jr., and M. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. MR 799685 (87g:65133)
  • [2] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [3] J. Douglas, Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), 39-52. MR 771029 (86b:65122)
  • [4] R. G. Durán, Error analysis in $ {L^p},1 \leq p \leq \infty $, for mixed methods for second order elliptic problems, RAIRO Anal. Numér. 22 (1988), 371-387. MR 958875 (89i:65114)
  • [5] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), 249-277. MR 592753 (82j:65076)
  • [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • [7] C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér. 15 (1981), 41-78. MR 610597 (83c:65239)
  • [8] Y. Kwon and F. A. Milner, $ {L^\infty }$-error estimates for mixed methods for semilinear second-order elliptic equations, SIAM J. Numer. Anal. 25 (1988), 46-53. MR 923925 (89c:65122)
  • [9] F. A. Milner, Mixed finite element methods for quasilinear second-order elliptic problems, Math. Comp. 44 (1985), 303-320. MR 777266 (86g:65215)
  • [10] J. A. Nitsche, $ {L^\infty }$-convergence of finite element approximations, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math., vol. 606, Springer-Verlag, Berlin, 1977, pp. 261-274. MR 0488848 (58:8351)
  • [11] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math., vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315. MR 0483555 (58:3547)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1303087-3
Keywords: Nonlinear elliptic problems, mixed finite elements, error estimates
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society