Conjugacy classes of and spectral rigidity

Author:
Ralph Phillips

Journal:
Math. Comp. **64** (1995), 1287-1306, S35

MSC:
Primary 11F72; Secondary 11Y70

DOI:
https://doi.org/10.1090/S0025-5718-1995-1303088-5

MathSciNet review:
1303088

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The free group is generated by and , and setting defines a unitary character on for . A program is devised to compute

*x*, and the remainder can be written as . The values of are computed for all traces between 3202 and 4802 (here ). The 's cluster around 0.6, attaining a maximum of . Finally, it is proved that the remainder has a negative bias by showing that the mean normalized remainder converges to a negative limit.

**[1]**A. Aurich, E. B. Bogomolny, and F. Steiner,*Periodic orbits on the regular hyperbolic octagon*, Phys. D**45**(1991), 91-101. MR**1098656 (92b:58173)****[2]**M. V. Berry,*Semiclassical theory of spectral rigidity*, Proc. Roy. Soc. London Ser. A**400**(1985), 229-251. MR**805089 (87i:81053)****[3]**D. Hejhal,*The Selberg trace formula for*PSL, vol. 1, Lecture Notes in Math., No. 548, Springer-Verlag, Berlin and New York, 1976. MR**0439755 (55:12641)****[4]**H. Iwaniec,*Prime geodesic theorem*, J. Reine Angew. Math.**349**(1984), 136-159. MR**743969 (85h:11025)****[5]**W. J. Luo and P. Sarnak,*Number variance for arithmetic hyperbolic surfaces*, Comm. Math. Phys.**161**(1994), 419-432. MR**1266491 (95k:11076)****[6]**R. Phillips and Z. Rudnick,*The circle problem in the hyperbolic plane*, J. Funct. Anal.**121**(1994), 78-116. MR**1270589 (95d:11135)****[7]**R. Phillips and P. Sarnak,*The spectrum of Fermat curves*, Geom. Funct. Anal.**1**(1991), 80-146. MR**1091611 (92a:11061)****[8]**-,*Cusp forms for character varieties*, Geom. Funct. Anal.**4**(1994), 93-118. MR**1254311 (94k:11061)****[9]**C. Schmit,*Quantum and classical properties of some billiards on the hyperbolic plane*, Chaos and Quantum Physics (M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds.), North-Holland, Amsterdam, 1991, pp. 333-369. MR**1188422 (94m:58176)****[10]**A. Selberg,*Göttingen lectures*, Collected works I, Springer-Verlag, Berlin and New York, 1989. MR**1117906 (92h:01083)****[11]**S. Wolpert,*The disappearance of cusp forms in special families*, Ann. of Math. (2)**139**(1994), 239-291. MR**1274093 (95e:11062)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11F72,
11Y70

Retrieve articles in all journals with MSC: 11F72, 11Y70

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1303088-5

Article copyright:
© Copyright 1995
American Mathematical Society