Multiquadric prewavelets on nonequally spaced knots in one dimension

Author:
M. D. Buhmann

Journal:
Math. Comp. **64** (1995), 1611-1625

MSC:
Primary 42C15

DOI:
https://doi.org/10.1090/S0025-5718-1995-1308448-4

MathSciNet review:
1308448

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we identify univariate prewavelets on spaces spanned by translates of multiquadric functions and other radial basis functions with *nonequally spaced* centers (or "knots"). Although the multiquadric function and its relations are our prime examples, the theory is sufficiently broad to admit prewavelets from other radial basis function spaces as well.

**[1]**C. de Boor,*Odd-degree spline interpolation at a biinfinite knot sequence*, Approximation Theory Bonn 1976 (R. Schaback and K. Scherer, eds.), Lecture Notes in Math., vol. 556, Springer-Verlag, Berlin, 1976, pp. 30-53. MR**0613677 (58:29610)****[2]**C. de Boor, R.A. DeVore, and A. Ron,*On the construction of multivariate (pre)wavelets*, Constr. Approx.**9**(1993), 123-166. MR**1215767 (94k:41048)****[3]**M. D. Buhmann,*New developments in the theory of radial basis function interpolation*, Multivariate Approximation: From CAGD to Wavelets (K. Jetter and F.I. Utreras, eds.), World Scientific, Singapore, 1993, pp. 35-75. MR**1359544****[4]**-,*Discrete least squares approximation and pre-wavelets from radial function spaces*, Math. Proc. Cambridge Philos. Soc.**114**(1993), 533-558. MR**1236000 (94i:41037)****[5]**-,*On quasi-interpolation with radial basis functions*, J. Approx. Theory**72**(1993), 103-130. MR**1198376 (94a:41038)****[6]**-,*Pre-wavelets on scattered knots and from radial function spaces: A review*, Proc. 6th Conference on the Mathematics of Surfaces (R.R. Martin, ed.), IMA Conference Proceedings Series, Oxford Univ. Press (to appear). MR**1430590 (97j:42014)****[7]**M. D. Buhmann and C.A. Micchelli,*Spline prewavelets with non-uniform knots*, Numer. Math.**61**(1992), 455-474. MR**1155333 (93g:41021)****[8]**M. D. Buhmann and N. Dyn,*Error estimates for multiquadric interpolation*, Curves and Surfaces (P.J. Laurent, A. LeMéhauté, and L.L. Schumaker, eds.), Academic Press, Boston, 1991, pp. 51-58. MR**1123718****[9]**C. K. Chui and J.Z. Wang,*A cardinal spline approach to wavelets*, Proc. Amer. Math. Soc.**113**(1992), 785-793. MR**1077784 (92b:41019)****[10]**C. K. Chui, J.D. Ward, and J. Stöckler,*Analytic wavelets generated by radial functions*, manuscript, 1994.**[11]**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge Univ. Press, Cambridge, 1934.**[12]**C. A. Micchelli, C. Rabut, and F. Utreras,*Using the refinement equation for the construction of pre-wavelets*III:*Elliptic splines*, Numer. Alg.**1**(1991), 331-352. MR**1139461 (93e:65025)****[13]**M. J. D. Powell, Univariate multiquadric interpolation: reproduction of linear polynomials, Multivariate Approximation and Interpolation (W. Haussmann and K. Jetter, eds.), Birkhäuser Verlag, Basel, 1990, pp. 227-240. MR**1111923 (91m:41003)****[14]**-,*Tabulation of thin plate splines on a very fine two-dimensional grid*, Numerical Methods of Approximation Theory (D. Braess and L.L Schumaker, eds.), Birkhäuser, Basel, 1992, pp. 221-244. MR**1269364 (95c:65029)****[15]**L. L. Schumaker,*Spline functions: Basic theory*, Wiley, New York, 1981. MR**606200 (82j:41001)**

Retrieve articles in *Mathematics of Computation*
with MSC:
42C15

Retrieve articles in all journals with MSC: 42C15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1308448-4

Article copyright:
© Copyright 1995
American Mathematical Society