Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Multiquadric prewavelets on nonequally spaced knots in one dimension


Author: M. D. Buhmann
Journal: Math. Comp. 64 (1995), 1611-1625
MSC: Primary 42C15
DOI: https://doi.org/10.1090/S0025-5718-1995-1308448-4
MathSciNet review: 1308448
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we identify univariate prewavelets on spaces spanned by translates of multiquadric functions and other radial basis functions with nonequally spaced centers (or "knots"). Although the multiquadric function and its relations are our prime examples, the theory is sufficiently broad to admit prewavelets from other radial basis function spaces as well.


References [Enhancements On Off] (What's this?)

  • [1] C. de Boor, Odd-degree spline interpolation at a biinfinite knot sequence, Approximation Theory Bonn 1976 (R. Schaback and K. Scherer, eds.), Lecture Notes in Math., vol. 556, Springer-Verlag, Berlin, 1976, pp. 30-53. MR 0613677 (58:29610)
  • [2] C. de Boor, R.A. DeVore, and A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9 (1993), 123-166. MR 1215767 (94k:41048)
  • [3] M. D. Buhmann, New developments in the theory of radial basis function interpolation, Multivariate Approximation: From CAGD to Wavelets (K. Jetter and F.I. Utreras, eds.), World Scientific, Singapore, 1993, pp. 35-75. MR 1359544
  • [4] -, Discrete least squares approximation and pre-wavelets from radial function spaces, Math. Proc. Cambridge Philos. Soc. 114 (1993), 533-558. MR 1236000 (94i:41037)
  • [5] -, On quasi-interpolation with radial basis functions, J. Approx. Theory 72 (1993), 103-130. MR 1198376 (94a:41038)
  • [6] -, Pre-wavelets on scattered knots and from radial function spaces: A review, Proc. 6th Conference on the Mathematics of Surfaces (R.R. Martin, ed.), IMA Conference Proceedings Series, Oxford Univ. Press (to appear). MR 1430590 (97j:42014)
  • [7] M. D. Buhmann and C.A. Micchelli, Spline prewavelets with non-uniform knots, Numer. Math. 61 (1992), 455-474. MR 1155333 (93g:41021)
  • [8] M. D. Buhmann and N. Dyn, Error estimates for multiquadric interpolation, Curves and Surfaces (P.J. Laurent, A. LeMéhauté, and L.L. Schumaker, eds.), Academic Press, Boston, 1991, pp. 51-58. MR 1123718
  • [9] C. K. Chui and J.Z. Wang, A cardinal spline approach to wavelets, Proc. Amer. Math. Soc. 113 (1992), 785-793. MR 1077784 (92b:41019)
  • [10] C. K. Chui, J.D. Ward, and J. Stöckler, Analytic wavelets generated by radial functions, manuscript, 1994.
  • [11] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
  • [12] C. A. Micchelli, C. Rabut, and F. Utreras, Using the refinement equation for the construction of pre-wavelets III: Elliptic splines, Numer. Alg. 1 (1991), 331-352. MR 1139461 (93e:65025)
  • [13] M. J. D. Powell, Univariate multiquadric interpolation: reproduction of linear polynomials, Multivariate Approximation and Interpolation (W. Haussmann and K. Jetter, eds.), Birkhäuser Verlag, Basel, 1990, pp. 227-240. MR 1111923 (91m:41003)
  • [14] -, Tabulation of thin plate splines on a very fine two-dimensional grid, Numerical Methods of Approximation Theory (D. Braess and L.L Schumaker, eds.), Birkhäuser, Basel, 1992, pp. 221-244. MR 1269364 (95c:65029)
  • [15] L. L. Schumaker, Spline functions: Basic theory, Wiley, New York, 1981. MR 606200 (82j:41001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 42C15

Retrieve articles in all journals with MSC: 42C15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1308448-4
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society