Multiamicable numbers

Authors:
Graeme L. Cohen, Stephen F. Gretton and Peter Hagis

Journal:
Math. Comp. **64** (1995), 1743-1753

MSC:
Primary 11A25

DOI:
https://doi.org/10.1090/S0025-5718-1995-1308449-6

MathSciNet review:
1308449

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Multiamicable numbers are a natural generalization of amicable numbers: two numbers form a multiamicable pair if the sum of the proper divisors of each is a multiple of the other. Many other generalizations have been considered in the past. This paper reviews those earlier generalizations and gives examples and properties of multiamicable pairs. It includes a proof that the set of all multiamicable numbers has density 0.

**[1]**S. Battiato and W. Borho,*Are there odd amicable numbers not divisible by three*?, Math. Comp.**50**(1988), 633-637. MR**929559 (89c:11015)****[2]**R. D. Carmichael,*Review of History of the theory of numbers*, Amer. Math. Monthly**26**(1919), 396-403. MR**1519382****[3]**Graeme L. Cohen,*On an integer's infinitary divisors*, Math. Comp.**54**(1990), 395-411. MR**993927 (90e:11011)****[4]**-,*Generalisations of amicable numbers*, Internal Report No. 36, School of Mathematical Sciences, University of Technology, Sydney, April 1992.**[5]**Henri Cohen,*On amicable and sociable numbers*, Math. Comp.**24**(1970), 423-429. MR**0271004 (42:5887)****[6]**L. E. Dickson,*Amicable number triples*, Amer. Math. Monthly**20**(1913), 84-91. MR**1517797****[7]**Leonard Eugene Dickson,*History of the theory of numbers*, Vol. 1, Chelsea, New York, 1971.**[8]**P. Erdős,*On amicable numbers*, Publ. Math. Debrecen**4**(1955), 108-111. MR**0069198 (16:998h)****[9]**Achim Flammenkamp,*New sociable numbers*, Math. Comp.**56**(1991), 871-873. MR**1052094 (92a:11004)****[10]**Richard K. Guy,*Unsolved problems in number theory*, Springer-Verlag, New York, 1981. MR**656313 (83k:10002)****[11]**Peter Hagis, Jr,*Unitary amicable numbers*, Math. Comp.**25**(1971), 915-918. MR**0299551 (45:8599)****[12]**C. Krishnamurthy,*Some sets of amicable numbers of higher order*, Indian J. Pure Appl. Math.**11(12)**(1980), 1549-1553. MR**617829 (82m:10010)****[13]**A. Makowski,*On some equations involving functions**and*, Amer. Math. Monthly**67**(1960), 668-670;*correction*, ibid.**68**(1961), 650. MR**0130209 (24:A76)****[14]**Thomas E. Mason,*On amicable numbers and their generalizations*, Amer. Math. Monthly**28**(1921), 195-200. MR**1519771****[15]**Wayne L. McDaniel,*On odd multiply perfect numbers*, Boll. Un. Mat. Ital.**2**(1970), 185-190. MR**0262154 (41:6764)****[16]**David Moews and Paul C. Moews,*A search for aliquot cycles below*, Math. Comp.**57**(1991), 849-855. MR**1094955 (92e:11151)****[17]**Paul Poulet,*La chasse aux nombres*, Bruxelles, 1929.**[18]**Herman J. J. te Riele,*On generating new amicable pairs from given amicable pairs*, Math. Comp.**42**(1984), 219-223. MR**725997 (85d:11107)****[19]**W. Sierpiñski,*Elementary theory of numbers*, North-Holland, Amsterdam, 1988.**[20]**Benjamin Franklin Yanney,*Another definition of amicable numbers and some of their relations to Dickson's amicables*, Amer. Math. Monthly**30**(1923), 311-315. MR**1520272**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A25

Retrieve articles in all journals with MSC: 11A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1308449-6

Article copyright:
© Copyright 1995
American Mathematical Society