Hermite interpolation by Pythagorean hodograph quintics
Authors:
R. T. Farouki and C. A. Neff
Journal:
Math. Comp. 64 (1995), 15891609
MSC:
Primary 65D17; Secondary 53A04, 65Y25, 68U07
MathSciNet review:
1308452
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The Pythagorean hodograph (PH) curves are polynomial parametric curves whose hodograph (derivative) components satisfy the Pythagorean condition for some polynomial . Thus, unlike polynomial curves in general, PH curves have arc lengths and offset curves that admit exact rational representations. The lowestorder PH curves that are sufficiently flexible for general interpolation/approximation problems are the quintics. While the PH quintics are capable of matching arbitrary firstorder Hermite data, the solution procedure is not straightforward and furthermore does not yield a unique resultthere are always four distinct interpolants (of which only one, in general, has acceptable "shape" characteristics). We show that formulating PH quintics as complexvalued functions of a real parameter leads to a compact Hermite interpolation algorithm and facilitates an identification of the "good" interpolant (in terms of minimizing the absolute rotation number). This algorithm establishes the PH quintics as a viable medium for the design or approximation of freeform curves, and allows a oneforone substitution of PH quintics in lieu of the widelyused "ordinary" cubics.
 [1]
P. Bézier, The mathematical basis of the UNISURF CAD system, Butterworths, London, 1986.
 [2]
Carl
de Boor, A practical guide to splines, Applied Mathematical
Sciences, vol. 27, SpringerVerlag, New York, 1978. MR 507062
(80a:65027)
 [3]
Manfredo
P. do Carmo, Differential geometry of curves and surfaces,
PrenticeHall Inc., Englewood Cliffs, N.J., 1976. Translated from the
Portuguese. MR
0394451 (52 #15253)
 [4]
Gerald
Farin, Curves and surfaces for computer aided geometric
design, 3rd ed., Computer Science and Scientific Computing, Academic
Press Inc., Boston, MA, 1993. A practical guide; With 1 IBMPC floppy disk
(5.25 inch; DD). MR 1201325
(93k:65016)
 [5]
Rida
T. Farouki, Pythagoreanhodograph curves in practical use,
Geometry processing for design and manufacturing, SIAM, Philadelphia, PA,
1992, pp. 3–33. MR
1146749
 [6]
Rida
T. Farouki, The conformal map 𝑧→𝑧² of the
hodograph plane, Comput. Aided Geom. Design 11
(1994), no. 4, 363–390. MR 1287495
(95f:65034), http://dx.doi.org/10.1016/01678396(94)902046
 [7]
R.
T. Farouki and C.
A. Neff, Analytic properties of plane offset curves, Comput.
Aided Geom. Design 7 (1990), no. 14, 83–99.
Curves and surfaces in CAGD ’89 (Oberwolfach, 1989). MR 1074601
(92b:65019), http://dx.doi.org/10.1016/01678396(90)90023K
 [8]
R.
T. Farouki and V.
T. Rajan, On the numerical condition of polynomials in Bernstein
form, Comput. Aided Geom. Design 4 (1987),
no. 3, 191–216. MR 917780
(89a:65028), http://dx.doi.org/10.1016/01678396(87)900124
 [9]
R.
T. Farouki and V.
T. Rajan, Algorithms for polynomials in Bernstein form,
Comput. Aided Geom. Design 5 (1988), no. 1,
1–26. MR
945302 (89c:65033), http://dx.doi.org/10.1016/01678396(88)900167
 [10]
R.
T. Farouki and T.
Sakkalis, Pythagorean hodographs, IBM J. Res. Develop.
34 (1990), no. 5, 736–752. MR 1084084
(92a:65063), http://dx.doi.org/10.1147/rd.345.0736
 [11]
F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea, New York, 1959, pp. 174176.
 [12]
T.
N. T. Goodman and K.
Unsworth, Shapepreserving interpolation by parametrically defined
curves, SIAM J. Numer. Anal. 25 (1988), no. 6,
1453–1465. MR 972467
(90a:65035), http://dx.doi.org/10.1137/0725085
 [13]
T.
N. T. Goodman and K.
Unsworth, Shape preserving interpolation by curvature continuous
parametric curves, Comput. Aided Geom. Design 5
(1988), no. 4, 323–340. MR 983466
(90e:65010), http://dx.doi.org/10.1016/01678396(88)90012X
 [14]
Peter
Henrici, Applied and computational complex analysis,
WileyInterscience [John Wiley & Sons], New York, 1974. Volume 1: Power
series—integration—conformal mapping—location of zeros;
Pure and Applied Mathematics. MR 0372162
(51 #8378)
 [15]
Erwin
Kreyszig, Differential geometry, Mathematical Expositions, No.
11, University of Toronto Press, Toronto, 1959. MR 0108795
(21 #7507)
 [16]
K.
K. Kubota, Pythagorean triples in unique factorization
domains, Amer. Math. Monthly 79 (1972),
503–505. MR 0297690
(45 #6742)
 [17]
Richard
S. Millman and George
D. Parker, Elements of differential geometry, PrenticeHall
Inc., Englewood Cliffs, N. J., 1977. MR 0442832
(56 #1208)
 [18]
B. Pham, Offset curves and surfaces: a brief survey, Comput. Aided Design 24 (1992), 223229.
 [19]
I.
J. Schoenberg, On variation diminishing approximation methods,
On numerical approximation. Proceedings of a Symposium, Madison, April
2123, 1958, Edited by R. E. Langer. Publication no. 1 of the Mathematics
Research Center, U.S. Army, the University of Wisconsin, The University of
Wisconsin Press, Madison, 1959, pp. 249–274. MR 0102167
(21 #961)
 [20]
Hassler
Whitney, On regular closed curves in the plane, Compositio
Math. 4 (1937), 276–284. MR
1556973
 [1]
 P. Bézier, The mathematical basis of the UNISURF CAD system, Butterworths, London, 1986.
 [2]
 C. de Boor, A practical guide to splines, Springer, New York, 1978. MR 507062 (80a:65027)
 [3]
 M. P. do Carmo, Differential geometry of curves and surfaces, PrenticeHall, Englewood Cliffs, NJ, 1976. MR 0394451 (52:15253)
 [4]
 G. Farin, Curves and surfaces for computer aided geometric design, 3rd ed., Academic Press, Boston, 1993. MR 1201325 (93k:65016)
 [5]
 R. T. Farouki, Pythagoreanhodograph curves in practical use, Geometry Processing for Design and Manufacturing (R. E. Barnhill, ed.), SIAM, Philadelphia, PA, 1992, pp. 333. MR 1146749
 [6]
 , The conformal map of the hodograph plane, Comput. Aided Geom. Design 11 (1994), 363390. MR 1287495 (95f:65034)
 [7]
 R. T. Farouki and C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Design 7 (1990), 8399; Algebraic properties of plane offset curves, ibid., 100127. MR 1074601 (92b:65019)
 [8]
 R. T. Farouki and V. T. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. Design 4 (1987), 191216. MR 917780 (89a:65028)
 [9]
 , Algorithms for polynomials in Bernstein form, Comput. Aided Geom. Design 5 (1988), 126. MR 945302 (89c:65033)
 [10]
 R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), 736752. MR 1084084 (92a:65063)
 [11]
 F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea, New York, 1959, pp. 174176.
 [12]
 T. N. T. Goodman and K. Unsworth, Shape preserving interpolation by parametrically defined curves, SIAM J. Numer. Anal. 25 (1988), 14531465. MR 972467 (90a:65035)
 [13]
 , Shape preserving interpolation by curvature continuous parametric curves, Comput. Aided Geom. Design 5 (1988), 323340. MR 983466 (90e:65010)
 [14]
 P. Henrici, Applied and computational complex analysis, Vol. 1, Wiley, New York, 1974, pp. 443444. MR 0372162 (51:8378)
 [15]
 E. Kreyszig, Differential geometry, University of Toronto Press, Toronto, 1959. MR 0108795 (21:7507)
 [16]
 K. K. Kubota, Pythagorean triples in unique factorization domains, Amer. Math. Monthly 79 (1972), 503505. MR 0297690 (45:6742)
 [17]
 R. S. Millman and G. D. Parker, Elements of differential geometry, PrenticeHall, Englewood Cliffs, NJ, 1977. MR 0442832 (56:1208)
 [18]
 B. Pham, Offset curves and surfaces: a brief survey, Comput. Aided Design 24 (1992), 223229.
 [19]
 I. J. Schoenberg, On variationdiminishing approximation methods, On Numerical Approximation (R. E. Langer, ed.), Univ. of Wisconsin Press, Madison, WI, 1959, pp. 249274. MR 0102167 (21:961)
 [20]
 H. Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276284. MR 1556973
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D17,
53A04,
65Y25,
68U07
Retrieve articles in all journals
with MSC:
65D17,
53A04,
65Y25,
68U07
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199513084526
PII:
S 00255718(1995)13084526
Article copyright:
© Copyright 1995 American Mathematical Society
