Parity of class numbers and Witt equivalence of quartic fields
Authors:
Stanislav Jakubec, František Marko and Kazimierz Szymiczek
Journal:
Math. Comp. 64 (1995), 1711-1715
MSC:
Primary 11R29; Secondary 11E81, 11R16
DOI:
https://doi.org/10.1090/S0025-5718-1995-1308455-1
Corrigendum:
Math. Comp. 66 (1997), 927.
MathSciNet review:
1308455
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We show that 27 out of the 29 Witt equivalence classes of quartic number fields can be represented by fields of class number 1. It is known that the remaining two classes contain solely fields of even class numbers. We show that these two classes can be represented by fields of class number 2.
- [1] Z. I. Borevič and I.R. Šafarevič, Number theory, 3rd rev. ed., "Nauka", Moscow, 1985. (Russian)
- [2] J. Buchmann, D. Ford, and M. Pohst, Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993), 873-879. MR 1176706 (94a:11164)
- [3] A. Czogała, Personal communication.
- [4] S. Jakubec and F. Marko, Witt equivalence classes of quartic number fields, Math. Comp. 58 (1992), 355-368. MR 1094952 (92e:11031)
- [5] R. Perlis, K. Szymiczek, P.E. Conner, and R. Litherland, Matching Witts with global fields., Contemp. Math. 155 (1994), 365-387. MR 1260721 (94m:11044)
- [6] K. Szymiczek, Witt equivalence of global fields, Comm. Algebra 19 (1991), 1125-1149. MR 1102331 (92d:11031)
- [7] -, Witt equivalence of global fields. II: Relative quadratic extensions, Trans. Amer. Math. Soc. 343 (1994), 277-303. MR 1176087 (94g:11024)
Retrieve articles in Mathematics of Computation with MSC: 11R29, 11E81, 11R16
Retrieve articles in all journals with MSC: 11R29, 11E81, 11R16
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1995-1308455-1
Article copyright:
© Copyright 1995
American Mathematical Society