Domain decomposition with nonmatching grids: augmented Lagrangian approach

Authors:
Patrick Le Tallec and Taoufik Sassi

Journal:
Math. Comp. **64** (1995), 1367-1396

MSC:
Primary 65N55; Secondary 65M55, 73V20

MathSciNet review:
1308457

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We propose and study a domain decomposition method which treats the constraint of displacement continuity at the interfaces by augmented Lagrangian techniques and solves the resulting problem by a parallel version of the Peaceman-Rachford algorithm. We prove that this algorithm is equivalent to the fictitious overlapping method introduced by P.L. Lions. We also prove its linear convergence independently of the discretization step *h*, even if the finite element grids do not match at the interfaces. A new preconditioner using fictitious overlapping and well adapted to three-dimensional elasticity problems is also introduced and is validated on several numerical examples.

**[1]**C. Bernardi, Y. Maday, and T. Patera,*A new nonconforming approach to domain decomposition*:*the mortar element method*, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Pitman, 1990; also report 89027 of Laboratoire d'Analyse Numérique, Univ. Paris 6.**[2]**Petter E. Bjørstad and Olof B. Widlund,*Iterative methods for the solution of elliptic problems on regions partitioned into substructures*, SIAM J. Numer. Anal.**23**(1986), no. 6, 1097–1120. MR**865945**, 10.1137/0723075**[3]**J.-F. Bourgat, Roland Glowinski, Patrick Le Tallec, and Marina Vidrascu,*Variational formulation and algorithm for trace operator in domain decomposition calculations*, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 3–16. MR**992000****[4]**J. H. Bramble, J. E. Pasciak, and A. H. Schatz,*An iterative method for elliptic problems on regions partitioned into substructures*, Math. Comp.**46**(1986), no. 174, 361–369. MR**829613**, 10.1090/S0025-5718-1986-0829613-0**[5]**James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz,*The construction of preconditioners for elliptic problems by substructuring. IV*, Math. Comp.**53**(1989), no. 187, 1–24. MR**970699**, 10.1090/S0025-5718-1989-0970699-3**[6]**Franco Brezzi and Michel Fortin,*Mixed and hybrid finite element methods*, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR**1115205****[7]**Ph. Clément,*Approximation by finite element functions using local regularization*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique**9**(1975), no. R-2, 77–84 (English, with Loose French summary). MR**0400739****[8]**P. Le Tallec, Y. H. De Roeck, and M. Vidrascu,*Domain decomposition methods for large linearly elliptic three-dimensional problems*, J. Comput. Appl. Math.**34**(1991), no. 1, 93–117. MR**1095198**, 10.1016/0377-0427(91)90150-I**[9]**Maksymilian Dryja, Barry F. Smith, and Olof B. Widlund,*Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions*, SIAM J. Numer. Anal.**31**(1994), no. 6, 1662–1694. MR**1302680**, 10.1137/0731086**[10]**Maksymilian Dryja and Olof B. Widlund,*Towards a unified theory of domain decomposition algorithms for elliptic problems*, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989) SIAM, Philadelphia, PA, 1990, pp. 3–21. MR**1064335****[11]**Charbel Farhat and François-Xavier Roux,*Implicit parallel processing in structural mechanics*, Comput. Mech. Adv.**2**(1994), no. 1, 124. MR**1280753****[12]**Michel Fortin and Roland Glowinski,*Augmented Lagrangian methods*, Studies in Mathematics and its Applications, vol. 15, North-Holland Publishing Co., Amsterdam, 1983. Applications to the numerical solution of boundary value problems; Translated from the French by B. Hunt and D. C. Spicer. MR**724072****[13]**D. Gabay,*Application of the methods of multipliers to variational inequalities*(in [11]).**[14]**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****[15]**E. Givois, Ph.D. Thesis, Univ. Paris Dauphine, Paris, 1992 (In French).**[16]**Roland Glowinski and Patrick Le Tallec,*Augmented Lagrangian and operator-splitting methods in nonlinear mechanics*, SIAM Studies in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR**1060954****[17]**P. Le Tallec,*Domain decomposition method in computational mechanics*, Computational Mechanics Advance (J. T. Oden, ed.), Vol. 1, North-Holland, Amsterdam, 1994.**[18]**P. Le Tallec and T. Sassi,*Domain decomposition with nonmatching grids*:*Schur complement approach*, Cahiers de mathématiques de la décision, no 9323, CEREMADE, Univ. Paris Dauphine, 1993.**[19]**P. Le Tallec, T. Sassi, and M. Vidrascu,*Three-dimensional domain decomposition methods with nonmatching grids and unstructured coarse solvers*, Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993) Contemp. Math., vol. 180, Amer. Math. Soc., Providence, RI, 1994, pp. 61–74. MR**1312378**, 10.1090/conm/180/01957**[20]**P.L. Lions,*On the Schwarz alternating method*III:*A variant for nonoverlapping subdomains*, In same proceedings as [10].**[21]**P.-L. Lions and B. Mercier,*Splitting algorithms for the sum of two nonlinear operators*, SIAM J. Numer. Anal.**16**(1979), no. 6, 964–979. MR**551319**, 10.1137/0716071**[22]**S. V. Nepomnyaschikh,*Mesh theorems on traces, normalizations of function traces and their inversion*, Soviet J. Numer. Anal. Math. Modelling**6**(1991), no. 3, 223–242. MR**1126677**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N55,
65M55,
73V20

Retrieve articles in all journals with MSC: 65N55, 65M55, 73V20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1995-1308457-5

Article copyright:
© Copyright 1995
American Mathematical Society