Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A dual finite element approach for stresses of elasto-perfectly plastic bodies

Authors: P. Neittaanmäki, V. Rivkind and G. Serëgin
Journal: Math. Comp. 64 (1995), 1455-1462
MSC: Primary 73V25; Secondary 65N30, 73E05, 73V05
MathSciNet review: 1308458
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Primal and dual approaches are introduced for the elasto-perfectly plastic problems. We prove theorems for approximating the stresses of elastic-perfectly plastic bodies.

References [Enhancements On Off] (What's this?)

  • [1] G. Anzellotti and M. Giaquinta, On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body in static equilibrium, J. Math. Pures Appl. 61 (1982), 219-244. MR 690394 (84d:73031)
  • [2] P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [3] G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972. MR 0464857 (57:4778)
  • [4] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek, Numerical solution of variational inequalities in mechanics, Springer-Verlag, New York, 1988. MR 952855 (89i:73003)
  • [5] J. Haslinger and P. Neittaanmäki, Finite element approximation of optimal shape design: Theory and applications, Wiley, Chichester, 1988. MR 982710 (90c:49010)
  • [6] C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math. 30 (1978), 103-116. MR 0483904 (58:3856)
  • [7] R. Kohn and R. Temam, Dual spaces of stresses and strains with application to Hencky plasticity, Appl. Math. Optim. 10 (1983), 1-35. MR 701898 (84g:73032)
  • [8] V. Rivkind, L. Rukhovetz, and L. Oganesjan, Variational-difference schemes, J. Lit. Acad. Sci. Vilnius 1 (1971), 2 (1973).
  • [9] G. Seregin, On the well-posedness of variational problems of mechanics of ideally elastic-plastic media, Soviet Phys. Dokl. 5 (1984), 316-318.
  • [10] -, Differentiability of local extremals of variational problems in the mechanics of perfect elastoplastic media, Differential Equations 23 (1987), 1981-1991. MR 928247 (89d:49008)
  • [11] -, On the regularity of weak solutions of variational problems in plasticity theory, Leningrad Math. J. 2 (1991), 321-337. MR 1062266 (91m:73037)
  • [12] -, Variation-difference scheme for problems on the mechanics of ideally elasto-plastic media, USSR Comput. Math. and Math. Phys. 25 (1985), 153-165.
  • [13] R. Temam and G. Strang, Functions of bounded deformation, Arch. Rational Mech. Anal. 75 (1980), 7-21. MR 592100 (82c:46042)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 73V25, 65N30, 73E05, 73V05

Retrieve articles in all journals with MSC: 73V25, 65N30, 73E05, 73V05

Additional Information

Keywords: Primal, dual approach, FEM, error estimate, elasto-perfectly plastic bodies
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society