Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On Yokoi's conjecture


Author: Ming Yao Zhang
Journal: Math. Comp. 64 (1995), 1675-1685
MSC: Primary 11R11; Secondary 11M26, 11R29
DOI: https://doi.org/10.1090/S0025-5718-1995-1308464-2
MathSciNet review: 1308464
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a lower bound for those discriminants of real quadratic fields $ \mathbb{Q}(\sqrt D )$ with $ D = {m^2} + 4$ and $ h(D) = 1$.


References [Enhancements On Off] (What's this?)

  • [1] E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1970, pp. 198-207. MR 0371577 (51:7795)
  • [2] H. K. Kim, M.-G. Leu, and T. Ono, On two conjectures on real quadratic fields, Proc. Japan Acad. 63 (1987), 222-224. MR 907000 (88k:11072)
  • [3] S. Louboutin, Prime producing quadratic polynomials and class-numbers of real quadratic fields, Canad. J. Math. 42 (1990), 315-341. MR 1051732 (91f:11073)
  • [4] R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the generalized Riemann hypothesis, Proc. Amer. Math. Soc. 102 (1988), 794-796. MR 934844 (89d:11090)
  • [5] -, Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), Number Theory (R. A. Mollin, ed.), (Banff, AB, 1988), de Gruyter, Berlin, 1990, pp. 417-425. MR 1106676 (92f:11144)
  • [6] -, On a determination of real quadratic fields of class number one and related continued fraction period length less than 25, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 20-25. MR 1103974 (92c:11113)
  • [7] H. Rademacher, Topics in analytic number theory, Springer-Verlag, Berlin, 1973. MR 0364103 (51:358)
  • [8] H. Riesel, Prime numbers and computer methods for factorization, Birkhäuser, Basel, 1985. MR 897531 (88k:11002)
  • [9] H. Stark, On complex quadratic fields with class number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112-119. MR 0195845 (33:4043)
  • [10] T. Tatuzawa, On a theorem of Siegel, Japan. J. Math. 21 (1951), 163-178. MR 0051262 (14:452c)
  • [11] H. Yokoi, Class number one problem for certain kind of real quadratic fields, Proc. Internat. Conf. on Class Numbers and Fundamental Units of Algebraic Number Fields, June 24-28, 1986, Katata, Japan, pp. 125-137. MR 891892 (88g:11076)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R11, 11M26, 11R29

Retrieve articles in all journals with MSC: 11R11, 11M26, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1995-1308464-2
Keywords: Quadratic field, class number, zeta-function
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society