Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Efficiency of a posteriori BEM--error estimates for first-kind integral equations on quasi--uniform meshes

Author: Carsten Carstensen
Journal: Math. Comp. 65 (1996), 69-84
MSC (1991): Primary 65N38, 65N15, 65R20, 45L10
MathSciNet review: 1320892
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the numerical treatment of integral equations of the first kind using boundary element methods (BEM), the author and E. P. Stephan have derived a posteriori error estimates as tools for both reliable computation and self-adaptive mesh refinement. So far, efficiency of those a posteriori error estimates has been indicated by numerical examples in model situations only. This work affirms efficiency by proving the reverse inequality. Based on best approximation, on inverse inequalities and on stability of the discretization, and complementary to our previous work, an abstract approach yields a converse estimate. This estimate proves efficiency of an a posteriori error estimate in the BEM on quasi--uniform meshes for Symm's integral equation, for a hypersingular equation, and for a transmission problem.

References [Enhancements On Off] (What's this?)

  • 1 I. Babuska and A. Miller, A feedback finite element method with a posteriori error estimation, Comput. Methods Appl. Mech. Engrg. 61 (1987), 1--40. MR 88d:73036
  • 2 J. Bergh and J. Löfström, Interpolation spaces, Springer, Berlin, 1976. MR 58:2349
  • 3 C. Carstensen, Adaptive boundary element methods and adaptive finite element and boundary element coupling, Boundary Value Problems and Integral Equations in Nonsmooth Domains (M. Costabel, M. Dauge, S. Nicaise, eds.), Proc. Conf. at the CIRM, Luminy, Lecture Notes in Pure and Appl. Math. vol. 167, Marcel Dekker, 1995, pp. 47--58. CMP 95:03
  • 4 C. Carstensen and E. P. Stephan, A posteriori error estimates for boundary element methods, Math. Comp. 64 (1995), 483--500.MR 95f:65211
  • 5 ------, Adaptive boundary element methods for some first kind integral equations, SIAM J. Numer. Anal. (accepted for publication 1994).
  • 6 ------, Adaptive boundary element methods for transmission problems, J. Austral. Math. Soc. Ser. B (accepted for publication 1995).
  • 7 ------, Adaptive coupling of boundary elements and finite elements, Math. Modelling Numer. Anal. (accepted for publication 1995).
  • 8 C. Carstensen, S. Funken, and E. P. Stephan, On the adaptive coupling of FEM and BEM in 2--d--elasticity, Preprint, Institut für Angewandte Mathematik, Universität Hannover, 1993.
  • 9 M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal. 19 (1988), 613--626. MR 89h:35090
  • 10 M. Costabel and E. P. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Banach Center Publ. 15 (1985), 175--251. MR 88f:35037
  • 11 ------, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), 367--413. MR 86f:76045
  • 12 M. Crouzeix and V. Thomée, The stability in $L_p$ and $W_p^1$ of the $L_2$--projection onto finite element function spaces, Math. Comp. 48 (1987), 521--532. MR 88f:41016
  • 13 R. A. DeVore and G. G. Lorenz, Constructive approximation, Springer, Berlin, 1993.MR 95f:41001
  • 14 K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp. 50 (1988), 361---383. MR 89c:65119
  • 15 K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43---77. MR 91m:65274
  • 16 B. Faehrmann, Lokale a--posteriori--Fehlerschätzer bei der Diskretisierung von Randintegralgleichungen, Ph.D. thesis, University of Kiel, FRG, 1993.
  • 17 N. Heuer, hp--Versionen der Randelementemethode, Ph.D. thesis, University of Hannover, FRG, 1992.
  • 18 W. Gui and I. Babuska, The $h$, $p$ and $h\text{-}p$ versions of the finite element method in 1 dimension, Numer. Math. 49 (1986), Part I, 577--612, Part II, 613--657, Part III, 659--683. MR 88b:65130a; MR 88b:65130b; MR 88b:65130c
  • 19 G. C. Hsiao and W. L. Wendland, The Aubin--Nitsche lemma for integral equations, J. Integral Equations 3 (1981), 299--315. MR 83j:45019
  • 20 C. Johnson and P. Hansbo, Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg. 101 (1992), 143--181. MR 93m:65157
  • 21 J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I, Springer, Berlin--Heidelberg--New York, 1972. MR 50:2670
  • 22 J. C. Nedelec, La méthode des élements finis appliquée aux equations intégrales de la physique, First meeting AFCET--SMF on applied mathematics Palaiseau, Vol. 1, 1978, pp. 181--190.
  • 23 E. Rank, Adaptive boundary element methods, Boundary Elements 9, Vol. 1 (C. A. Brebbia, W. L. Wendland and G. Kuhn, eds.), Springer-Verlag, Heidelberg, 1987, pp. 259---278. CMP 21:03
  • 24 J. Saranen and W. L. Wendland, Local residual-type error estimates for adaptive boundary element methods on closed curves, Appl. Anal. 48 (1993), 37---50. MR 95e:65112
  • 25 I. H. Sloan and A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory, IMA J. Numer. Anal. 8 (1988), 105--122. MR 90d:65230a
  • 26 E. P. Stephan and W. L. Wendland, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems, Manuscripta geodaetica 1 (1976), 93--123. MR 58:25012
  • 27 E.P. Stephan, W.L. Wendland and G.C. Hsiao, On the integral equation method for the plane mixed boundary value problem of the Laplacian, Math. Methods Appl. Sci. 1 (1979), 265--321. MR 82e:31003
  • 28 R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Preprint, 1993.
  • 29 W.L. Wendland and De-hao Yu, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math. 53 (1988), 539--558. MR 89h:65194
  • 30 ------, A posteriori local error estimates of boundary element methods with some pseudo--differential equations on closed curves, J. Comput. Math. 10 (1992), 273--289. MR 93d:65105

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N38, 65N15, 65R20, 45L10

Retrieve articles in all journals with MSC (1991): 65N38, 65N15, 65R20, 45L10

Additional Information

Carsten Carstensen
Affiliation: Fachbereich Mathematik, Technische Hochschule Darmstadt, D 64283 Darmstadt, Germany

Keywords: Boundary element method, a posteriori error estimate
Received by editor(s): March 22, 1994
Received by editor(s) in revised form: September 13, 1994
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society