Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing all power integral bases in orders of
totally real cyclic sextic number fields


Author: István Gaál
Journal: Math. Comp. 65 (1996), 801-822
MSC (1991): Primary 11Y50; Secondary 11Y40, 11D57
DOI: https://doi.org/10.1090/S0025-5718-96-00708-9
MathSciNet review: 1333313
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is given for determining all power integral bases in orders of totally real cyclic sextic number fields. The orders considered are in most cases the maximal orders of the fields. The corresponding index form equation is reduced to a relative Thue equation of degree 3 over the quadratic subfield and to some inhomogeneous Thue equations of degree 3 over the rationals. At the end of the paper, numerical examples are given.


References [Enhancements On Off] (What's this?)

  • 1. A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford 20 (1969), 129--137. MR 40:1333
  • 2. A.M. Bergé, J. Martinet and M. Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp. 54 (1990), 869--884. MR 90k:11169
  • 3. J. Blass, A.M.W. Glass, D.K. Manski, D.B. Meronk and R.P. Steiner, Constants for lower bounds for linear forms in the logarithms of algebraic numbers II: The homogeneous rational case, Acta Arith. 55 (1990), 15--22. MR 91h:11064
  • 4. J. Blass, A.M.W. Glass, D.K. Manski, D.B. Meronk and R.P. Steiner, Corrigendum to the paper: Constants for lower bounds for linear forms in the logarithms of algebraic numbers II: The homogeneous rational case, Acta Arith. 65 (1993), p. 383. MR 95d:11093
  • 5. W.J. Ellison, Recipes for solving diophantine problems by Baker's method, Sém. Theorie des Nombres (1970--1971), exp. no. 11. MR 52:10591
  • 6. V. Ennola, S. Mäki and R. Turunen, On real cyclic sextic fields, Math. Comp. 45 (1985), 591--611. MR 86m:11084
  • 7. J.H. Evertse, K. Gy\H{o}ry, C.L. Stewart and R. Tijdeman, S--unit equations and their applications, New Advances in Transcendence Theory, ed. by A.Baker, Cambridge University Press, 1988, pp. (110--174). MR 89j:11028
  • 8. U. Fincke and M. Pohst, A procedure for determining algebraic integers of given norm, EUROCAL 83, Lecture Notes in Computer Science, No. 162, Springer Verlag, New York, 1983, pp. (194--202). MR 86k:11078
  • 9. I. Gaál, On the resolution of inhomogeneous norm form equations in two dominating variables, Math. Comp. 51 (1988), 359--373. MR 89m:11030
  • 10. I. Gaál, A. Peth\H{o} and M. Pohst, On the resolution of index form equations in biquadratic number fields, I, J. Number Theory 38 (1991), 18--34. MR 92g:11031
  • 11. I. Gaál, A. Peth\H{o} and M. Pohst, On the resolution of index form equations in biquadratic number fields, II, J. Number Theory 38 (1991), 35--51. MR 92g:11031
  • 12. I. Gaál, A. Peth\H{o} and M. Pohst, On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case, J. Number Theory 53 (1995), 100--114.
  • 13. I. Gaál, A. Peth\H{o} and M. Pohst, On the resolution of index form equations in dihedral number fields, J. Experimental Math. 3 (1994), 245--254.
  • 14. I. Gaál, A. Peth\H{o} and M. Pohst, On the resolution of index form equations, Proc. of the 1991 International Symposium on Symbolic and Algebraic Computation, ed. by Stephen M. Watt, ACM Press, 1991, pp. (185-186).
  • 15. I. Gaál, A. Peth\H{o} and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Comp. 16 (1993), 563--584. MR 95f:11109
  • 16. I. Gaál, A. Peth\H{o} and M. Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms -- with an application to index form equations in quartic number fields, to appear, J. Number Theory.
  • 17. I. Gaál and N. Schulte, Computing all power integral bases of cubic number fields, Math. Comp. 53 (1989), 689--696. MR 90b:11108
  • 18. K. Gy\H{o}ry, Sur les polynomes a coefficients entiers et de discriminant donné, III, Publ. Math.(Debrecen) 23 (1976), 141--165. MR 55:10419c
  • 19. A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515--534. MR 84a:12002
  • 20. S. Mäki, The Determination of Units in Real Cyclic Sextic Fields, Lecture Notes in Mathematics, vol. 797, Springer Verlag, Berlin--Heidelberg--New York, 1980. MR 82a:12004
  • 21. I. Niven and H.S. Zuckerman, An introduction to the Theory of Numbers, J. Wiley and Sons, New York, 1980. MR 81g:10001
  • 22. M. Pohst, Computational Algebraic Number Theory, DMV Seminar, Band 21, Birkhäuser Verlag, Basel -- Boston -- Berlin, 1993. MR 94j:11132
  • 23. M. Olivier, Corps sextiques contenant un corps quadratique (I), Séminaire de Théorie des Nombres Bordeaux 1 (1989), 205--250. MR 91g:11122
  • 24. M. Olivier, Corps sextiques contenant un corps quadratique (II), Séminaire de Théorie des Nombres Bordeaux 2 (1990), 49--102. MR 91g:11123
  • 25. M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge University Press, 1989. MR 92b:11074
  • 26. W.M. Schmidt, Diophantine Approximations, Springer Lecture Notes in Mathematics, No. 785, Springer Verlag, Berlin--Heidelberg--New York, 1980. MR 81j:10038
  • 27. V.G. Sprindzuk, Representation of numbers by the norm forms with two dominating variables, J. Number Theory 6 (1974), 481--486. MR 50:7045
  • 28. N. Tzanakis and B.M.M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99--132. MR 90c:11018
  • 29. N. Tzanakis and B.M.M. de Weger, How to explicitly solve a Thue--Mahler equation, Compositio Math. 84 (1992), 223--288. MR 93k:11025
  • 30. B.M.M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Amsterdam, 1989. MR 90m:11205
  • 31. B.M.M. de Weger, A Thue equation with quadratic integers as variables, Math. Comp. 64 (1995), 855--861. MR 95f:11020

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11Y50, 11Y40, 11D57

Retrieve articles in all journals with MSC (1991): 11Y50, 11Y40, 11D57


Additional Information

István Gaál
Affiliation: Kossuth Lajos University, Mathematical Institute, H–4010 Debrecen Pf.12., Hungary
Email: igaal@math.klte.hu

DOI: https://doi.org/10.1090/S0025-5718-96-00708-9
Keywords: Cyclic sextic number fields, index form equation, power bases
Received by editor(s): May 2, 1994
Received by editor(s) in revised form: March 7, 1995
Additional Notes: This work was begun during the author’s stay in Düsseldorf as a fellow of the Alexander von Humboldt Foundation and completed under the partial support of the Hungarian National Foundation for Scientific research Grant no. 1641/91.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society