Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Spectral methods in polar coordinates
for the Stokes problem.
Application to computation in
unbounded domains


Author: Laurence Halpern
Journal: Math. Comp. 65 (1996), 507-531
MSC (1991): Primary 35C10, 35G15, 65M70, 65T10
DOI: https://doi.org/10.1090/S0025-5718-96-00710-7
MathSciNet review: 1333315
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present spectral methods for solving the Stokes problem in a circular domain. Their main feature is the uniform inf-sup condition, which allows for optimal error estimates. We apply them to the resolution of exterior problems by coupling with the transparent boundary condition.


References [Enhancements On Off] (What's this?)

  • 1. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathématiques et Applications, vol. 10, Springer-Verlag, Paris, 1992. MR 94f:65112
  • 2. ------, A collocation method over staggered grids for the Stokes problem, Internat. J. Numer. Methods Fluids 8 (1988), 537--557. MR 89j:76041
  • 3. H. Brezis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1983. MR 85a:58022
  • 4. C. Canuto, S. I. Hariharan and L. Lustman, Spectral methods for exterior elliptic problems, Numer. Math. 46 (1985), 505--520. MR 86j:65148
  • 5. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), 67--86. MR 82m:41003
  • 6. P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press, Orlando, 1984. MR 86d:65004
  • 7. J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968.MR 37:2557
  • 8. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms, Springer Series in Comput. Math., vol. 5, Springer-Verlag, Berlin and New York, 1986. MR 88b:65129
  • 9. L. Halpern, Méthodes spectrales pour la résolution du problème de Stokes dans un disque, Application aux calculs en domaine non borné, Prépublication 93-12, Université Paris-Nord.
  • 10. C. Johnson and J. C. Nedelec, On the coupling of boundary integral and finite element methods, Math. Comp. 35 (1980), 1063--1079. MR 82c:65072
  • 11. J. B. Keller and D. Givoli, Exact nonreflecting boundary conditions, J. Comput. Phys. 82 (1989), 172--192. MR 91a:76064
  • 12. M. Lenoir and A. Tounsi, The localized finite element method and its application to the two-dimensional sea-keeping problem, SIAM J. Numer. Anal. 25 (1988), 729--752. MR 89h:90046
  • 13. V. Levillain, Couplage éléments finis-équations intégrales pour la résolution des équations de Maxwell en milieu hétérogène, Thèse de doctorat de l'Ecole Polytechnique, June 1991.
  • 14. B. Mercier and G. Raugel, Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en $r,z$ et séries de Fourier en $\theta$, RAIRO Anal. Numér. 16 (1982), 405--461. MR 84g:65154
  • 15. A. Sequeira, The coupling of boundary integral and finite element methods for the bidimensional exterior steady Stokes problem, Math. Methods Appl. Sci. 5 (1983), 356--376. MR 85g:65121
  • 16. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1939. MR 1:14
  • 17. H. Vandeven, Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique, RAIRO Modél. Math. Anal. Numer. 23 (1989), 649--688. MR 91h:65185

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 35C10, 35G15, 65M70, 65T10

Retrieve articles in all journals with MSC (1991): 35C10, 35G15, 65M70, 65T10


Additional Information

Laurence Halpern
Affiliation: Université Paris-Nord, Institut Galilée, Département de Mathématiques, Laboratoire “Analyse, Géométrie et Applications”, URA 742 du CNRS, 93430 Villetaneuse, France
Email: halpern@math.univ-paris13.fr

DOI: https://doi.org/10.1090/S0025-5718-96-00710-7
Received by editor(s): March 14, 1994
Received by editor(s) in revised form: December 15, 1994
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society