Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Dissections of $p:q$ rectangles


Author: Charles H. Jepsen
Journal: Math. Comp. 65 (1996), 771-778
MSC (1991): Primary 05B99, 68R10
DOI: https://doi.org/10.1090/S0025-5718-96-00711-9
MathSciNet review: 1333316
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine all simple perfect dissections of $p:q$ rectangles into at most twelve $p:q$ rectangular elements. A computer search shows there are only eight such dissections, two of order 10, three of order 11, and three of order 12.


References [Enhancements On Off] (What's this?)

  • 1. C. J. Bouwkamp, On the dissection of rectangles into squares ii, Kon. Nederl. Akad. Wetensch. 50 (1947), 58-71; (= Indag. Math. 9 (1947), 43--56) MR 8:398f
  • 2. ------, On some new simple perfect squared squares, Discrete Math. 106/107 (1992), 67--75. MR 93i:52023
  • 3. R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312--340. MR 2:153d
  • 4. A. J. W. Duijvestijn, Simple perfect square of lowest order, J. Combin. Theory Ser. B 25 (1978), 240--243. MR 80a:05051
  • 5. ------, Simple perfect squared squares and $2 \times 1$ squared rectangles of orders 21 to 24, J. Combin. Theory Ser. B 59 (1993), 26--34. MR 94c:05017
  • 6. ------, Simple perfect squared squares and $2 \times 1$ squared rectangles of order 25, Math. Comp. 62 (1994), 325--332. MR 94c:05023
  • 7. C. H. Jepsen, Dissections into $1:2$ rectangles, Discrete Math. (to appear).
  • 8. Carsten Müller, Perfekte Rechteckzerlegung, El. Math.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 05B99, 68R10

Retrieve articles in all journals with MSC (1991): 05B99, 68R10


Additional Information

Charles H. Jepsen
Affiliation: Department of Mathematics, Grinnell College, Grinnell, Iowa 50112
Email: jepsen@math.grin.edu

DOI: https://doi.org/10.1090/S0025-5718-96-00711-9
Keywords: Simple perfect dissection, $c$-net, $p$-net
Received by editor(s): January 11, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society