THE SERIAL TEST FOR A NONLINEAR PSEUDORANDOM NUMBER GENERATOR

TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA

Abstract. Let \(M = 2^w \), and \(G_M = \{1, 3, \ldots, M - 1\} \). A sequence \(\{y_n\}, y_n \in G_M \), is obtained by the formula \(y_{n+1} \equiv a y_n + b + c y_n \mod M \). The sequence \(\{x_n\}, x_n = y_n/M \), is a sequence of pseudorandom numbers of the maximal period length \(M/2 \) if and only if \(a + c \equiv 1 \pmod{4} \), \(b \equiv 2 \pmod{4} \). In this note, the uniformity is investigated by the 2-dimensional serial test for the sequence. We follow closely the method of papers by Eichenauer-Herrmann and Niederreiter.

1. Introduction

For generating uniform pseudorandom numbers (denoted as PRN) in the interval \(I = [0, 1) \), the linear congruential methods are commonly used. Recently several nonlinear methods, especially the inversive congruential one, were proposed and investigated. For a modulus \(M \), let

\[Z_M = \{0, 1, \ldots, M - 1\} = \mathbb{Z}/M. \]

In the linear method, a sequence \(\{y_n\} \) in \(Z_M \) is generated by

\[y_{n+1} \equiv cy_n + b \pmod{M}, \quad n = 0, 1, \ldots, \]

where \(c, b \in \mathbb{Z}_M \). The PRN are obtained by the normalization

\[x_n = y_n/M. \]

In the inversive method with power of two modulus, let \(M = 2^w \) and \(G_M = \{1, 3, \ldots, M - 1\} = \{\text{positive odd integers less than } M\} \).

For any \(u \in G_M \), there is a unique \(\overline{u} \in G_M \) such that \(\overline{u} u \equiv 1 \pmod{M} \). Now a sequence \(\{y_n\} \) in \(G_M \) is generated by the inversive recursion formula

\[y_{n+1} \equiv a \overline{y}_n + b \pmod{M}, \quad n = 0, 1, \ldots, \]

in which \(a, b \in \mathbb{Z}_M \) are chosen so that \(y_n \in G_M \) implies \(y_{n+1} \in G_M \).

In a previous note we have proposed another nonlinear method which is given by the following formula, with the modulus \(M = 2^w \),

\[y_{n+1} \equiv a y_n + b + cy_n \pmod{M}, \quad n = 0, 1, \ldots, \]

in which \(a, b, c \in \mathbb{Z}_M \) should be such that \(y_n \in G_M \) implies \(y_{n+1} \in G_M \). The PRN \(\{x_n\} \) is defined by (1.2). In [7], we proved the following Theorem A, which shows that the modified inversive method (1.4) bears close resemblance to (1.3):

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem A. Let $M = 2^w, w \geq 3$. Then the PRN $\{x_n\}$ derived from (1.4) is purely periodic with period $M/2$ if and only if

$$a + c \equiv 1 \pmod{4} \quad \text{and} \quad b \equiv 2 \pmod{4}. $$

Now we will study the behavior of these PRN under the 2-dimensional serial test. That is, we will estimate the discrepancy of the PRN. For a dimension $k \geq 2$ and for N arbitrary points $t_0, t_1, \ldots, t_{N-1} \in [0, 1)^k$ we define the discrepancy

$$D_N(t_0, t_1, \ldots, t_{N-1}) = \sup_{J} |F_N(J) - V(J)|,$$

where the supremum is extended over all subintervals J of $[0, 1)^k$, $F_N(J)$ is N^{-1} times the number of terms among $t_0, t_1, \ldots, t_{N-1}$ falling into J, and $V(J)$ denotes the k-dimensional volume of J. If $\{x_n\}$ is a sequence of PRN in $[0, 1)$ with period p, then we consider the points

$$x_n = (x_{n}, x_{n+1}, \ldots, x_{n+k-1}) \in [0, 1)^k \quad \text{for} \quad n = 0, 1, \ldots, p-1,$$

and write their discrepancy $D_p(x_0, x_1, \ldots, x_{p-1})$ as $D_p^{(k)}$.

Theorem 1. Let $M = 2^w (w \geq 6)$ and $a, b, c \in \mathbb{Z}_{M}$. Suppose $a + c \equiv 1 \pmod{4}$, $b \equiv 2 \pmod{4}$ and $a \neq 0$. Then, for the PRN $\{x_n\}$ in Theorem A, we have

(I) If c is an even number, hence a is odd, then

$$D^{(2)}_{M/2} < 2KM^{-1/2} \log M)^2 + 1.12M^{-1/2} \log M + 1.35M^{-1/2} + 4/M,$$

with $K = 2/\{(2^{3/2} - 1)BP(J)\}$.

(II) If c is odd (hence a is even), then writing $a = 2'a'$, a' odd, we have

$$D^{(2)}_{M/2} < 2^{t/2}M^{-1/2} \{2K \log M)^2 + (1.12) \log M + 1.35 \} + 4/M + 2L/M^2,$$

with $K = 2/\{(2^{3/2} - 1)BP(J)\}$ and $L = 2^{t/2} \{2(t-1)(t+2)^2 + 14(t+6)^2\}$, assuming that $w \geq t + 6$.

Theorem 2. Let $M = 2^w, w \geq 6$. Let $0 < r \leq 2$ and $A(r) = (4 - r^2)/(8 - r^2)$. Suppose $c \in \mathbb{Z}_{M}$ is given.

If c is even, there are more than $A(r)M/8$ values of $a \in \mathbb{Z}_{M}$ such that $a + c \equiv 1 \pmod{4}$, and for any $b \in \mathbb{Z}_{M}$ with $b \equiv 2 \pmod{4}$, we have

$$D^{(k)}_{M/2} \geq K'M^{-1/2} \quad \text{with} \quad K' = r/(\pi + 2).$$

If c is odd, there are more than $A(r)M/32$ values of $a \in \mathbb{Z}_{M}$ such that $a + c \equiv 1 \pmod{4}$, and for any $b \in \mathbb{Z}_{M}$ with $b \equiv 2 \pmod{4}$, we have

$$D^{(k)}_{M/2} \geq (2K'/3)M^{-1/2} \quad \text{with} \quad K' = r/(\pi + 2).$$

Our proofs of Theorems 1 and 2 are almost the same as in [9, Theorem 2], [6, Theorems 1-2], respectively. The lattice structure of the sequence generated by (1.4) will be studied in another paper.
2. Proof of Theorem 1

We closely follow the method in [9, p.141]. Let \(M = 2^w \), \(w \geq 6 \).
Suppose \(m = 2^f \), with a positive integer \(f \), be given. For \(k \geq 1 \), let \(C_k(m) \) be the set of all nonzero lattice points \((h_1, ..., h_k) \in \mathbb{Z}^k\) with \(-m/2 < h_j \leq m/2\), for \(1 \leq j \leq k \). We put

\[
r(h, m) = \begin{cases}
1 & \text{for } h = 0, \\
m \sin(\pi |h|/m) & \text{for } h \in C_1(m),
\end{cases}
\]

and for \(h = (h_1, ..., h_k) \in C_k(m) \) we define

\[
r(h, m) = \prod_{j=1}^{k} r(h_j, m).
\]

For real \(s \) we write \(e(s) = e^{2\pi is} \). For \(x, y \in \mathbb{R}^k \), \(x \cdot y \) denotes the inner product.
We put, for integers \(u, v \),

\[
S(u, v; m) = \sum_{n \in G_m} e((un + v\overline{n})/m),
\]

in which \(\overline{n} \in G_m \) denotes the number such that \(\overline{n}n \equiv 1 \pmod{m} \). This sum has the following properties [12, 9]:

(2.1) \(S(u, v; m) = S(1, uv; m) \) if \(u \) is odd,

(2.2) \(S(u, v; m) = 0 \) if \(u + v \equiv 1 \pmod{2} \),

(2.3) \(S(u, v; m) = 2^d S(u/2^d, v/2^d; 2^f - d) \) if \(u \equiv v \equiv 0 \pmod{2^d} \) and \(d < f \),

where in (2.2) and (2.3) we assume that \(f \geq 2 \). Further (see [9, p.140]),

(2.4) \(|S(1, v; 8)| = \begin{cases} 4 & \text{if } v \equiv 3 \pmod{4}, \\
0 & \text{otherwise},
\end{cases} \)

(2.5) \(|S(1, v; 16)| = \begin{cases} 4\sqrt{2} & \text{if } v \equiv 1 \pmod{4}, \\
0 & \text{otherwise},
\end{cases} \)

(2.6) \(|S(1, v; 32)| \leq \begin{cases} 8\sqrt{2} + \sqrt{2} & \text{if } v \equiv 5 \pmod{8}, \\
0 & \text{otherwise}.
\end{cases} \)

For \(f \geq 6 \), we have

(2.7) \(|S(1, v; 2^f)| \leq \begin{cases} 2^{(f+3)/2} & \text{if } v \equiv 1 \pmod{8}, \\
0 & \text{otherwise}.
\end{cases} \)

The following lemmas are from [9, p.136 and p.140].
Lemma 2.1. Let \(m \geq 2 \) be an integer and let \(y_0, y_1, ..., y_{N-1} \in \mathbb{Z}^k \) be lattice points all of whose coordinates are in \([0, m)\). Then the discrepancy of the points \(t_n = y_n/m \), \(0 \leq n \leq N-1 \), satisfies

\[
D_N(t_0, t_1, ..., t_{N-1}) \leq \frac{k}{m} + \frac{1}{N} \sum_{h \in \mathcal{C}_k(m)} \frac{1}{r(h, m)} \left| \sum_{n=0}^{N-1} e(h \cdot t_n) \right| = \frac{k}{m} + \frac{1}{N} \sum_{h \in \mathcal{C}_k(m)} \frac{1}{r(h, m)} \left| \sum_{n=0}^{N-1} e(h \cdot t_n) \right|.
\]

Lemma 2.2. Let \(m = 2^f \). For \(f \geq 6 \) and \(r \) odd, we have

\[
\sum_{k \in \mathcal{C}_1(m), k \equiv r \pmod{8}} \csc\left(\frac{\pi |k|}{m} \right) < \frac{(f+1)(\log 2)}{4\pi} m + 0.2126m,
\]

and for \(f \geq 3 \) we have

\[
\sum_{k \in \mathcal{C}_1(m), k \text{ odd}} \csc\left(\frac{\pi |k|}{m} \right) < \frac{(f+1)(\log 2)}{\pi} m + 0.3024m.
\]

Now we prove Theorem 1. Since \(\{y_0, y_1, ..., y_{M/2-1}\} = G_M \), we have

\[\{(y_n, y_{n+1}); 0 \leq n \leq M/2 - 1\} = \{(n, a\bar{n} + b + cn); n \in G_M\}.\]

Lemma 2.1 yields

\[
D_{M/2}^{(2)} \leq \frac{2}{M} + \frac{2}{M} \sum_{h \in \mathcal{C}_2(M)} \left| S(h) \right| \frac{1}{r(h, M)}.
\]

where for \(h = (h_1, h_2) \in \mathcal{C}_2(M) \) we have

\[
\left| S(h) \right| = \left| \sum_{n \in G_M} e\left(\frac{(h_1 + h_2) n + h_2 a \bar{n} + h_2 b}{M} \right) \right| = \left| S(h_1 + h_2 c, h_2 a; M) \right|.
\]

Now \(\gcd(h_1, h_2, M) = 2^d \) with \(0 \leq d \leq w - 1 \), so splitting up the following sum according to the value of \(d \), we get

\[
\sum_{h \in \mathcal{C_2}(M)} \left| S(h) \right| \frac{1}{r(h, M)} = \sum_{d=0}^{w-1} T_d
\]

with

\[
T_d = \sum_{h} \frac{\left| S(h_1 + h_2 c, h_2 a; M) \right|}{r(h, M)},
\]

where the last sum is extended over all \(h = (h_1, h_2) \in \mathcal{C}_2(M) \) with \(\gcd(h_1, h_2, M) = 2^d \). It follows immediately that

\[
T_{w-1} = 1 + \frac{1}{2M}.
\]
Now consider $0 \leq d \leq w - 2$. Write $k_1 = h_1/2^d, k_2 = h_2/2^d$. If one of k_1 or k_2 is even, then (2.3) and (2.2) imply $S(h_1 + h_2c, h_2a; M) = 0$. Thus it suffices to suppose that both k_1 and k_2 are odd.

We divide the proof into two cases (I) and (II):

(I) c is an even number, hence a is odd. In this case, (2.3) and (2.1) yield

$$S(h_1 + h_2c, h_2a; M) = 2^d S(1, (k_1 + k_2c)k_2a; 2^{w-d}).$$

Thus we obtain

$$T_d = 2^d \sum_{k_1, k_2 \in C_1(2^{w-d})} \frac{|S(1, (k_1 + k_2c)k_2a; 2^{w-d})|}{r(k_12^d, M)r(k_22^d, M)}.$$

For $0 \leq d \leq w - 6$, we use (2.7) to get

$$T_d \leq 2^{(w+d+3)/2} \sum \{r(k_12^d, M)r(k_22^d, M)\}^{-1},$$

with the sum over odd numbers $k_1, k_2 \in C_1(2^{w-d})$ such that $(k_1 + k_2c)k_2a \equiv 1 \pmod{8}$, that is, $k_1 + k_2c \equiv k_2a \pmod{8}$, i.e.,

$$k_1 \equiv k_2(a - c) \pmod{8}.$$

Thus we have

$$T_d \leq 2^{(w+3d+3)/2} \sum_{k_2 \in C_1(2^{w-d})} \csc \left(\frac{\pi |k_2|}{2^{w-d}} \right) \sum_{k_1 \in C_1(2^{w-d})} \csc \left(\frac{\pi |k_1|}{2^{w-d}} \right).$$

Together with (2.8) and (2.9), this yields

$$T_d \leq 2^{(w-3d+3)/2} \left\{ \frac{(w-d+1) \log 2}{4\pi} + 0.2126 \right\} \left\{ \frac{(w-d+1) \log 2}{\pi} + 0.3024 \right\}$$

$$< 2^{(w-3d+3)/2} \left\{ \frac{(\log M)^2}{4\pi^2} + 0.127 \log M + 0.1401 + 0.0122a^2 \right\}.$$

Therefore, as in [9, p.142],

$$\sum_{d=0}^{w-6} T_d < M^{1/2} \{ K(\log M)^2 + 0.56 \log M + 0.675 \} - \frac{876}{M},$$

with $K = 2/\{(2^{3/2} - 1)\pi^2\}$.

For $d = w - 5$, we get from (2.6) and (2.13)

$$T_{w-5} \leq 2^{w-2} \sqrt{2 + \sqrt{2}} \sum_{k_2 \in C_1(32)} \csc \left(\frac{\pi |k_2|}{32} \right) \sum_{k_1 \in C_1(32)} \csc \left(\frac{\pi |k_1|}{32} \right),$$
in which we note that, in the second sum, \(k_1 \equiv k_2 (5a - c) \equiv 5k_2(a - c) \mod 8 \), since \(c \) is even. As in [9, p.142], by distinguishing the cases \(a - c \equiv 1 \) or \(a - c \equiv 5 \mod 8 \), we have

\[
(2.17) \quad T_{w-5} < 240/M.
\]

Similarly, using (2.4), (2.5) and (2.13), we get

\[
(2.18) \quad T_{w-4} < 60/M, \quad T_{w-3} < 14/M.
\]

Since \(|S(1,v;4)| = 2 \) for \(v \) odd, it follows from (2.12) that

\[
(2.19) \quad T_{w-2} = 4/M.
\]

By combining (2.11) and (2.16, 17, 18, 19), we get

\[
\sum_{d=0}^{w-1} T_d < M^{1/2} \{ K(\log M)^2 + 0.56 \log M + 0.675 \} + 1,
\]

with the constant \(K \) in (2.16). The desired result follows from (2.10).

(II) \(c \) is an odd number, hence \(a \) \((\neq 0)\) is even, \(a \in \mathbb{Z}_M \). Put \(a = 2^t a', a' \) odd.

Consider some \(T_d, 0 \leq d \leq w - 2 \).

We always assume that both \(k_j = h_j/2^d \), \(j = 1, 2 \), are odd. Put \(2^s = \gcd(k_1 + k_2 c, a, 2^{w-d-1}) \), and \(r_1 = (k_1 + k_2 c)/2^s, r_2 = k_2 a/2^s \).

(II-1) Suppose \(t \geq w - d - 1 \). If \(s < w - d - 1 \), then

\[
S(h) = S(h_1 + h_2 c, h_2 a; M) = 2^{d+s} S(r_1, r_2; 2^{w-d-s}) = 0
\]

by (2.2), since \(r_1 \) is odd and \(r_2 \) is even. If \(s = w - d - 1 \), then

\[
S(h) = 2^{d+2w-d-1} S(r_1, r_2; 2) = 2^{w-1} = M/2.
\]

If \(w - d \geq 3 \), then

\[
T_d = \frac{M}{2} \sum_{k_1 + k_2 c \equiv 0 \mod 2^{w-d-1}} \frac{1}{r(2^d, M)r(2^d, M)}
\]

\[
= \frac{1}{2M} \sum_{k_2 \in C_1(2^{w-d})} \csc(\pi |k_2|/2^{w-d}) \sum_{k_1 \in C_1(2^{w-d})} \csc(\pi |k_1|/2^{w-d})
\]

\[
\leq \frac{1}{2M} \left(\frac{(w - d + 1) \log 2}{\pi} + 0.3024 \right)^2 2^{2(w-d)}
\]

by Lemma 2.2. Since \(3 \leq w - d \leq t + 1 \), we have

\[
T_d \leq \frac{2^{2t+1}}{M} \left(\frac{(t + 2) \log 2}{\pi} + 0.3024 \right)^2.
\]
If \(w - d = 2 \), then
\[
T_{w-2} \leq 4 \frac{\csc^2(\pi/4)}{2M} = \frac{4}{M}.
\]

Hence,
\[
T_d = T_{w-2} + \sum_{w-3 \leq d \leq w-t-1} T_d \leq \frac{4}{M} + \frac{(t-1)2^{2t+1}}{M} \left(\frac{(t+2) \log 2}{\pi} + 0.3024 \right)^2,
\]
in which the second term does not appear if \(t = 1 \).

(II-2) Now suppose \(1 \leq t \leq w - d - 2 \).

We define \(s \) and \(r_1, r_2 \) as above. Obviously, \(s \leq t \), hence \(w - d - 1 - s \geq 1 \). Thus one of \(r_1 \) or \(r_2 \) must be odd. If one of \(r_1 \) or \(r_2 \) is even,
\[
S(h) = S(h_1 + h_2c, h_2a; M) = 2^{d+s}S(r_1, r_2; 2^{w-d-s}) = 0.
\]

Hence both \(r_1 \) and \(r_2 \) must be odd, which implies \(s = t \).

Let \(d \leq w - t - 6 \). We argue as in the case \(d \leq w - 6 \) of (I), with \(w - t \) instead of \(w \); we obtain
\[
T_d \leq 2^{(-3w+d+t+3)/2} \sum_{k_2 \in C_1(2^{w-d}) \atop k_2 \text{ odd}} \csc \left(\frac{\pi |k_2|}{2^{w-d}} \right) \sum_{k_1 \in C_1(2^{w-d}) \atop k_1 \text{ odd}} \csc \left(\frac{\pi |k_1|}{2^{w-d}} \right) \\
= 2^{(-3w+d+t+3)/2} \sum_{k_2 \in C_1(2^{w-d}) \atop k_2 \text{ odd}} \csc \left(\frac{\pi |k_2|}{2^{w-d}} \right) \sum_{k_1 \in C_1(2^{w-d}) \atop k_1 \equiv 1 \pmod{8}} \csc \left(\frac{\pi |k_1|}{2^{w-d}} \right) \\
= 2^{(-3w+d+t+3)/2} \sum_{k_2 \in C_1(2^{w-d}) \atop k_2 \text{ odd}} \csc \left(\frac{\pi |k_2|}{2^{w-d}} \right) \sum_{k_1 \in C_1(2^{w-d}) \atop k_1 \equiv k_2(a-c) \pmod{8}} \csc \left(\frac{\pi |k_1|}{2^{w-d}} \right) \\
\leq 2^{(-3w+d+t+3)/2} \sum_{k_2 \in C_1(2^{w-d}) \atop k_2 \text{ odd}} \csc \left(\frac{\pi |k_2|}{2^{w-d}} \right) \sum_{k_1 \in C_1(2^{w-d}) \atop k_1 \equiv k_2(a-c) \pmod{8}} \csc \left(\frac{\pi |k_1|}{2^{w-d}} \right) \\
\leq 2^{(-3w+d+t+3)/2} \left(\frac{(w-d+1) \log 2}{4\pi} + 0.2126 \right) \left(\frac{(w-d+1) \log 2}{\pi} + 0.3024 \right) \\
\leq 2^{(-3w+d+t+3)/2} \left(\frac{\log M}{4\pi^2} + 0.127 \log M + 0.1401 + 0.0122d^2 \right),
\]

since the set \(\{k_1; k_1 \equiv k_2(a-c) \pmod{8}; 2^t \} \) is contained in \(\{k_1; k_1 \equiv k_2(a-c) \pmod{8}\} \). Hence we obtain, as in [9, p.142],
\[
\sum_{d=0}^{w-t-6} T_d < 2^{t/2}M^{1/2} \left\{ K \log M \right\}^2 + 0.56 \log M + 0.675 - 876/M,
\]
with \(K = 2/\{(2^{3/2} - 1)\pi^2\} \).
For $d = w - t - 5$, we have as in [9, p.142], with r_1 and r_2 as above,

$$T_{w-t-5} \leq 2^{-w-2} \sqrt{2 + \sqrt{2} \sum_{k_2 \in C_1(2^2+5) \atop k_2 \text{ odd}} \csc \left(\frac{\pi |k_2|}{2w+5} \right) \sum_{k_1 \in C_1(2^2+5) \atop r_1 r_2 \equiv 5 \pmod{8}} \csc \left(\frac{\pi |k_1|}{2w+5} \right)}$$

$$\leq 2^{-w-2} \sqrt{2 + \sqrt{2} \sum_{k_2 \in C_1(2^2+5) \atop k_2 \text{ odd}} \csc \left(\frac{\pi |k_2|}{2w+5} \right) \sum_{k_1 \in C_1(2^2+5) \atop k_1 \equiv k_2(5a-c) \pmod{8}} \csc \left(\frac{\pi |k_1|}{2w+5} \right)}$$

since $\{k_1; r_1 r_2 \equiv 5 \pmod{8}\} = \{k_1; k_1 + k_2 c \equiv 5k_2 a \pmod{8 \cdot 2^t}\}$ is contained in $\{k_1; k_1 \equiv k_2(5a-c) \pmod{8}\}$. Thus we get

$$(2.22) \quad T_{w-t-5} < (t+6)^2 2^{2t+3}/M.$$

Similarly, using (2.4), (2.5), we get

$$(2.23) \quad T_{w-t-4} < (t+5)^2 2^{2t}/M, \quad T_{w-t-3} < (t+4)^2 2^{2t}/M.$$

Since $|S(1,v;4)| = 2$ for v odd, it follows that

$$(2.24) \quad T_{w-t-2} \leq (t+3)^2 2^{2t+2}/M.$$

By (2.11), (2.20), (2.21), (2.22), (2.23), (2.24), we obtain

$$\sum_{d=0}^{w-1} T_d < 2^{w/2} M^{1/2} \{K(\log M)^2 + 0.56 \log M + 0.675 \} + 1 + L/M,$$

with $K = 2/(2^{3/2}-1)\pi^2$ and $L = 2^{2t} \{2(2t-1)(t+2)^2 + 14(t+6)^2\}$. Thus, the desired result follows from (2.10).

3. Proof of Theorem 2

The proof is almost the same as in [6].

When c is an even number. Calculating as in [6, p.778], putting $h = (1, 1, 0, ..., 0)$, we have

$$(\pi + 2) MD_{M/2}^{(k)} \geq \left| \sum e\left(\frac{y_n + y_{n+1}}{M}\right) \right| = |S(1+c, a; M)| = |S(1, (1+c) a; M)|.$$

By [6, Lemma 4], there exist more than $A(r)M/8$ values of $(1+c)a \in Z_M$ such that $(1+c)a \equiv 1 \pmod{8}$, and $|S(1,(1+c)a;M)| \geq r M^{1/2}$. Then $a \equiv 1 + c \pmod{8}$, hence $a + c \equiv 1 + 2c \equiv 1 \pmod{4}$.

When c is odd. If $c = 1 + 8k$, then put $h = (3, 1, 0, ..., 0)$ and get

$$3(\pi + 2) MD_{M/2}^{(k)} \geq \left| \sum e\left(\frac{3y_n + y_{n+1}}{M}\right) \right| = |S(3+c, a; M)|$$

$$= 4|S(1+2k, a/4; M/4)| \geq 4r(M/4)^{1/2} = 2r M^{1/2}.$$
for more than $A(r)M/32$ values of $(1+2k)a/4$ with $(1+2k)a/4 \equiv 1$, i.e., $a/4 \equiv 1+2k \mod 8$. Then $a \equiv 4 + 8k = 3 + c$, hence $a + c \equiv -3 + 2a \equiv 1 \mod 4$.

If $c = 3 + 4k$, then put $h = (-1, 1, 0, \ldots, 0)$ and get

$$(\pi + 2)M D_{M/2}^{(h)} \geq \left| \sum e\left(-\frac{y_n + y_{n+1}}{M}\right) \right| = |S(c - 1, a; M)|$$

$$= 2|S(1 + 2k, a/2; M/2)| \geq 2r(M/2)^{1/2} = \sqrt{2}rM^{1/2}$$

for more than $A(r)M/16$ values of $(1+2k)a/2$ with $(1+2k)a/2 \equiv 1$, i.e., $a/2 \equiv 1+2k \mod 8$. Then $a \equiv 2 + 4k = c - 1$, hence $a + c \equiv 1 + 2a \equiv 1 \mod 4$.

If $c = 5 + 8k$, then put $h = (-1, 1, 0, \ldots, 0)$ and get

$$(\pi + 2)M D_{M/2}^{(h)} \geq |S(c - 1, a; M)| = 4|S(1 + 2k, a/4; M/4)| \geq 2rM^{1/2}$$

for more than $A(r)M/32$ values of $(1+2k)a/4$ with $(1+2k)a/4 \equiv 1$, i.e., $a/4 \equiv 1+2k \mod 8$. Then $a \equiv 4 + 8k = c - 1$, hence $a + c \equiv 1 + 2a \equiv 1 \mod 4$.

References

Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Chiba City, 263 Japan

Department of Mathematics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Chiba City, 263 Japan

Department of Mathematics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Chiba City, 263 Japan

E-mail address: yanagi@math.s.chiba-u.ac.jp