Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Trigonometric wavelets for Hermite interpolation

Author: Ewald Quak
Journal: Math. Comp. 65 (1996), 683-722
MSC (1991): Primary 42A15, 41A05, 65D05
MathSciNet review: 1333324
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to investigate a multiresolution analysis of nested subspaces of trigonometric polynomials. The pair of scaling functions which span the sample spaces are fundamental functions for Hermite interpolation on a dyadic partition of nodes on the interval $[0,2\pi )$. Two wavelet functions that generate the corresponding orthogonal complementary subspaces are constructed so as to possess the same fundamental interpolatory properties as the scaling functions. Together with the corresponding dual functions, these interpolatory properties of the scaling functions and wavelets are used to formulate the specific decomposition and reconstruction sequences. Consequently, this trigonometric multiresolution analysis allows a completely explicit algorithmic treatment.

References [Enhancements On Off] (What's this?)

  • [1] Pascal Auscher, Wavelets with boundary conditions on the interval, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 217–236. MR 1161253
  • [2] A. S. Cavaretta Jr., A. Sharma, and R. S. Varga, Lacunary trigonometric interpolation on equidistant nodes, Quantitative approximation (Proc. Internat. Sympos., Bonn, 1979) Academic Press, New York-London, 1980, pp. 63–80. MR 588171
  • [3] Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
  • [4] C. K. Chui and H. N. Mhaskar, On trigonometric wavelets, Constr. Approx. 9 (1993), no. 2-3, 167–190. MR 1215768, 10.1007/BF01198002
  • [5] Charles K. Chui and Jian-zhong Wang, On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc. 330 (1992), no. 2, 903–915. MR 1076613, 10.1090/S0002-9947-1992-1076613-3
  • [6] Philip J. Davis, Circulant matrices, John Wiley & Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication; Pure and Applied Mathematics. MR 543191
  • [7] T. N. T. Goodman, Interpolatory Hermite spline wavelets, J. Approx. Theory 78 (1994), 174--189. CMP 94:15
  • [8] Y. W. Koh, S. L. Lee and H. H. Tan, Periodic orthogonal splines and wavelets, Applied and Computational Harmonic Analysis 2 (1995), 201--218. CMP 95:15
  • [9] R. A. Lorentz and A. A. Sahakian, Orthogonal trigonometric Schauder bases of optimal degree for $C(K)$, Journal of Fourier Analysis and Applications 1 (1994), 103--112. CMP 95:05
  • [10] D. Offin and K. Oskolkov, A note on orthonormal polynomial bases and wavelets, Constr. Approx. 9 (1993), no. 2-3, 319–325. MR 1215775, 10.1007/BF01198009
  • [11] J. Prestin and E. Quak, Trigonometric interpolation and wavelet decompositions, Numerical Algorithms 9 (1995), 293--317. CMP 95:15
  • [12] ------, A duality principle for trigonometric wavelets, Wavelets, Images, and Surface Fitting (P. J. Laurent, A. Le Méhauté and L. L. Schumaker, eds.), A K Peters, Boston, 1994, pp. (407--418). CMP 95:03
  • [13] ------, Decay properties of trigonometric wavelets, Proceedings of the Cornelius Lanczos International Centenary Conference (J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons, eds.), SIAM, Philadelphia, 1994, pp. (413--415).
  • [14] A. A. Privalov, An orthogonal trigonometric basis, Mat. Sb. 182 (1991), no. 3, 384–394 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 363–372. MR 1110072
  • [15] A. F. Timan, Theory of approximation of functions of a real variable, Translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar. International Series of Monographs in Pure and Applied Mathematics, Vol. 34, A Pergamon Press Book. The Macmillan Co., New York, 1963. MR 0192238
  • [16] Yuan Xu, The generalized Marcinkiewicz-Zygmund inequality for trigonometric polynomials, J. Math. Anal. Appl. 161 (1991), no. 2, 447–456. MR 1132120, 10.1016/0022-247X(91)90344-Y
  • [17] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 42A15, 41A05, 65D05

Retrieve articles in all journals with MSC (1991): 42A15, 41A05, 65D05

Additional Information

Ewald Quak
Affiliation: Center for Approximation Theory, Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

Keywords: Trigonometric wavelets, Hermite interpolation, decomposition and reconstruction sequences and algorithms
Received by editor(s): May 4, 1994
Received by editor(s) in revised form: October 23, 1994
Article copyright: © Copyright 1996 American Mathematical Society