Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of $\Bbb Z_3$-invariants
of real quadratic fields


Author: Hisao Taya
Journal: Math. Comp. 65 (1996), 779-784
MSC (1991): Primary 11R23, 11R11, 11R27, 11Y40
DOI: https://doi.org/10.1090/S0025-5718-96-00721-1
MathSciNet review: 1333326
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $k$ be a real quadratic field and $p$ an odd prime number which splits in $k$. In a previous work, the author gave a sufficient condition for the Iwasawa invariant $\lambda_p(k)$ of the cyclotomic $\Z_p$-extension of $k$ to be zero. The purpose of this paper is to study the case $p=3$ of this result and give new examples of $k$ with $\lambda_3(k)=0$, by using information on the initial layer of the cyclotomic $\Z_3$-extension of $k$.


References [Enhancements On Off] (What's this?)

  • 1. B. Ferrero and L. C. Washington, The Iwasawa invariant $\mu_p$ vanishes for abelian number fields, Ann. of Math., 109 (1979), pp. 377--395. MR 81a:12005
  • 2. T. Fukuda, Iwasawa $\lambda$-invariants of certain real quadratic fields, Proc. Japan Acad., 65A (1989), pp. 260--262. MR 91b:11115
  • 3. ------, Computation of unit group for $\Z_3$-extensions of real quadratic fields, Bull. of Yamagata Univ., Nat. Sci., 13, no.1 (1992), pp. 27--33. MR 93g:11108
  • 4. ------, Iwasawa $\lambda$-invariants of imaginary quadratic fields, J. of the College of Industrial Technology, Nihon Univ. 27 (1994), 35--88.
  • 5. T. Fukuda and K. Komatsu, On $\Z_p$-extensions of real quadratic fields, J. Math. Soc. Japan, 38 (1986), pp. 95--102. MR 87d:11081
  • 6. T. Fukuda, K. Komatsu, and H. Wada, A remark on the $\lambda$-invariants of real quadratic fields, Proc. Japan Acad., 62A (1986), pp. 318--319. MR 88a:11113
  • 7. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), pp. 263--284. MR 53:5529
  • 8. K. Iwasawa, On $\Z_l$-extensions of algebraic number fields, Ann. of Math., 98 (1973), pp. 246--326. MR 50:2120
  • 9. S. Mäki, The determination of units in real cyclic sextic fields, in Lecture Notes in Math. 797. Springer--Verlag, Berlin, Heidelberg, New York (1980). MR 82a:12004
  • 10. H. Taya, On the Iwasawa $\lambda$-invariants of real quadratic fields, Tokyo J. Math., 16 (1993), pp. 121--130. MR 94f:11113
  • 11. L. C. Washington, Introduction to Cyclotomic Fields, in Graduate Texts in Math. vol. 83. Springer-Verlag, New York, Heidelberg, Berlin (1982). MR 85g:11001

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11R23, 11R11, 11R27, 11Y40

Retrieve articles in all journals with MSC (1991): 11R23, 11R11, 11R27, 11Y40


Additional Information

Hisao Taya
Affiliation: Department of Mathematics, School of Science and Engineering, Waseda University 3-4-1, Okubo Shinjuku-ku, Tokyo 169, Japan
Email: taya@cfi.waseda.ac.jp

DOI: https://doi.org/10.1090/S0025-5718-96-00721-1
Keywords: Iwasawa invariants, real quadratic fields, unit groups, computation
Received by editor(s): October 12, 1993
Received by editor(s) in revised form: August 2, 1994
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society