Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Hermite and Smith normal form algorithms
over Dedekind domains

Author: Henri Cohen
Journal: Math. Comp. 65 (1996), 1681-1699
MSC (1991): Primary 11Y40
MathSciNet review: 1361805
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show how the usual algorithms valid over Euclidean domains, such as the Hermite Normal Form, the modular Hermite Normal Form and the Smith Normal Form can be extended to Dedekind rings. In a sequel to this paper, we will explain the use of these algorithms for computing in relative extensions of number fields.

References [Enhancements On Off] (What's this?)

  • 1. W. Bosma and M. Pohst, Computations with finitely generated modules over Dedekind rings, Proceedings ISSAC'91 (1991), 151--156.
  • 2. H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math., vol. 138, Springer-Verlag, 1993. MR 94i:11105
  • 3. H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic computations in relative extensions of number fields, in preparation.
  • 4. P. D. Domich, R. Kannan and L. E. Trotter, Jr., Hermite normal form computation using modulo determinant arithmetic, Math. Oper. Research 12 (1987), 50--59. MR 88e:65047
  • 5. J. Hafner and K. McCurley, Asymptotically fast triangularization of matrices over rings, SIAM J. Comput. 20 (1991), 1068--1083. MR 93d:15021
  • 6. G. Havas and B. Majewski, Hermite normal form computation for integer matrices, Congr. Numer. 105 (1994), 184--193. CMP 96:10
  • 7. R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite normal form of an integer matrix, SIAM J. Comput. 8 (1979), 499-507. MR 81k:15002
  • 8. P. Montgomery, in preparation.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11Y40

Retrieve articles in all journals with MSC (1991): 11Y40

Additional Information

Henri Cohen
Affiliation: Laboratoire A2X, UMR 9936 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France

Keywords: Dedekind domain, Hermite normal form, Smith normal form, relative extensions of number fields
Received by editor(s): January 11, 1995
Received by editor(s) in revised form: July 19, 1995
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society