On weight functions which admit explicit GaussTurán quadrature formulas
Authors:
Laura Gori and Charles A. Micchelli
Journal:
Math. Comp. 65 (1996), 15671581
MSC (1991):
Primary 65D32; Secondary 41A55
MathSciNet review:
1361808
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The main purpose of this paper is the construction of explicit GaussTurán quadrature formulas: they are relative to some classes of weight functions, which have the peculiarity that the corresponding orthogonal polynomials, of the same degree, are independent of . These weights too are introduced and discussed here. Moreover, highestprecision quadratures for evaluating FourierChebyshev coefficients are given.
 [1]
V.
M. Badkov, Convergence in the mean and almost everywhere of Fourier
series in polynomials that are orthogonal on an interval, Mat. Sb.
(N.S.) 95(137) (1974), 229–262, 327 (Russian). MR 0355464
(50 #7938)
 [2]
A.
Ghizzetti and A.
Ossicini, Quadrature formulae, Academic Press, New York, 1970.
MR
0269116 (42 #4012)
 [3]
G.
H. Golub and J.
Kautský, Calculation of Gauss quadratures with multiple free
and fixed knots, Numer. Math. 41 (1983), no. 2,
147–163. MR
703119 (84i:65030), http://dx.doi.org/10.1007/BF01390210
 [4]
L.
Gori and M.
L. Lo Cascio, A note on a class of Turán type quadrature
formulas with generalized Gegenbauer weight functions, Studia Univ.
BabeşBolyai Math. 37 (1992), no. 1,
47–63 (English, with English and Romanian summaries). MR 1324767
(95j:65020)
 [5]
L.
Gori NicolòAmati and E.
Santi, On the convergence of Turán type rules for Cauchy
principal value integrals, Calcolo 28 (1991),
no. 12, 21–35 (1992). MR 1177934
(94e:65026), http://dx.doi.org/10.1007/BF02575867
 [6]
, On the evaluation of Hilbert transforms by means of a particular class of Turán quadrature rules, Numer. Algor. 10 (1995), 1739.
 [7]
O.
Kis, Remark on mechanical quadrature, Acta Math. Acad. Sci.
Hungar 8 (1957), 473–476 (Russian). MR 0093673
(20 #196)
 [8]
Charles
Micchelli, The fundamental theorem of algebra for monosplines with
multiplicities, Linear operators and approximation (Proc. Conf.,
Oberwolfach, 1971), Birkhäuser, Basel, 1972, pp. 419–430.
Internat. Ser. Numer. Math., Vol. 20. MR 0393951
(52 #14758)
 [9]
C.
A. Micchelli and T.
J. Rivlin, Turán formulae and highest precision quadrature
rules for Chebyshev coefficients, IBM J. Res. Develop.
16 (1972), 372–379. Mathematics of numerical
computation. MR
0334465 (48 #12784)
 [10]
Charles
A. Micchelli and A.
Sharma, On a problem of Turán: multiple node Gaussian
quadrature, Rend. Mat. (7) 3 (1983), no. 3,
529–552 (English, with Italian summary). MR 743396
(86d:41032)
 [11]
Gradimir
V. Milovanović, Construction of 𝑠orthogonal
polynomials and Turán quadrature formulae, Numerical methods
and approximation theory, III (Niš, 1987) Univ. Niš,
Niš, 1988, pp. 311–328. MR 960351
(89g:65023)
 [12]
Paul
Nevai, Mean convergence of Lagrange
interpolation. III, Trans. Amer. Math. Soc.
282 (1984), no. 2,
669–698. MR
732113 (85c:41009), http://dx.doi.org/10.1090/S00029947198407321134
 [13]
P.
Turán, On the theory of the mechanical quadrature, Acta
Sci. Math. Szeged 12 (1950), no. Leopoldo Fejer et
Frederico Riesz LXX annos natis dedicatus, Pars A, 30–37. MR 0036797
(12,164b)
 [14]
P.
Turán, On some open problems of approximation theory,
J. Approx. Theory 29 (1980), no. 1, 23–85. P.
Turán memorial volume; Translated from the Hungarian by P.
Szüsz. MR
595512 (82e:41003), http://dx.doi.org/10.1016/00219045(80)901380
 [1]
 V. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. U.S.S.R.  Sb. 24 (1974), 223256. MR 50:7938
 [2]
 A. Ghizzetti and A. Ossicini, Quadrature Formulae, Academic Press, New York (1970). MR 42:4012
 [3]
 G.H. Golub and J. Kautsky, Calculation of Gauss quadrature with multiple free and fixed knots, Numer. Math. 41 (1983), 147162. MR 84i:65030
 [4]
 L. Gori and M.L. Lo Cascio, A note on a class of Turán type quadrature formulas with generalized Gegenbauer weight functions, Studia Univ. Babe\c{s}  Bolyai Mathematica 37 (1992), 4763. MR 95j:65020
 [5]
 L. Gori and E. Santi, On the convergence of Turán type rules for Cauchy principal value integrals, Calcolo 28 (1991), 2135. MR 94e:65026
 [6]
 , On the evaluation of Hilbert transforms by means of a particular class of Turán quadrature rules, Numer. Algor. 10 (1995), 1739.
 [7]
 O. Kis, Remarks on mechanical quadrature, (Russian), Acta Math. Acad. Sci. Hungaricae 8 (1957), 473476. MR 20:196
 [8]
 C.A. Micchelli, The fundamental theorem of algebra for monosplines with multiplicities, in Linear Operators and Approximation, eds. P. Butzer and J.P. Kahane, B. Sz. Nagy, ISNM 20, Birkhäuser Verlag, 1971, pp. 372379. MR 52:14758
 [9]
 C.A. Micchelli and T.J. Rivlin, Turán formulas and highest precision quadrature rules for Chebyshev coefficients, IBM Journal of Research and Development 16 (1972), 372379. MR 48:12784
 [10]
 C.A. Micchelli and A. Sharma, On a problem of Turán : multiple node Gaussian quadrature, Rend. Mat. VII 3 (1983), 529552. MR 86d:41032
 [11]
 G.V. Milovanovi\'{c}, Construction of sorthogonal polynomials and Turán quadratures, in Approx. Theory III, Ni\v{s}, 1987, (ed. G.V. Milovanovi\'{c}), Univ. Ni\v{s}, 1988, pp. 311328. MR 89g:65023
 [12]
 P. Nevai, Mean convergence of Lagrange interpolation III, Trans. A.M.S. 282 (1984), 669698. MR 85c:41009
 [13]
 P. Turán, On the theory of mechanical quadrature, Acta Sci. Math. Szeged 2 (1950), 3037. MR 12:164b
 [14]
 , On some open problems in approximation theory, J. Approx. Theory 29 (1980), 2385. MR 82e:41003
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (1991):
65D32,
41A55
Retrieve articles in all journals
with MSC (1991):
65D32,
41A55
Additional Information
Laura Gori
Affiliation:
Dipartimento di Metodi e Modelli Matematici, per le Scienze Applicate, Università “La Sapienza", Via Antonio Scarpa , 1600161 Roma, Italia
Charles A. Micchelli
Affiliation:
Mathematical Sciences Department, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
DOI:
http://dx.doi.org/10.1090/S0025571896007697
PII:
S 00255718(96)007697
Keywords:
Quadrature,
Tur\'{a}ntype integration rules,
generalized Jacobi weights
Received by editor(s):
November 29, 1994
Received by editor(s) in revised form:
August 9, 1995
Additional Notes:
The second author was partially supported by the Alexander von Humboldt Foundation.
The first author was supported by Ministero Università e Ricerca Scientifica e Tecnologica – Italia.
Article copyright:
© Copyright 1996
American Mathematical Society
