Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



An a posteriori error estimate for a
first-kind integral equation

Author: Carsten Carstensen
Journal: Math. Comp. 66 (1997), 139-155
MSC (1991): Primary 65N38, 65N15, 65R20, 45L10
MathSciNet review: 1372001
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present a new a posteriori error estimate for the boundary element method applied to an integral equation of the first kind. The estimate is local and sharp for quasi-uniform meshes and so improves earlier work of ours. The mesh-dependence of the constants is analyzed and shown to be weaker than expected from our previous work. Besides the Galerkin boundary element method, the collocation method and the qualocation method are considered. A numerical example is given involving an adaptive feedback algorithm.

References [Enhancements On Off] (What's this?)

  • 1. D.N. Arnold, W.L. Wendland: On the asymptotic convergence of collocation methods. Math. Comp. 41 (1983) 349-381. MR 85h:65254
  • 2. M. Asadzadeh, K. Eriksson: An adaptive finite element method for a potential problem. SIAM J. Numer. Anal. 31 (1994) 831-855. MR 95b:65155
  • 3. J. Bergh, J. Löfström: Interpolation spaces. Springer Berlin 1976. MR 58:2349
  • 4. C. Carstensen: Adaptive boundary element methods and adaptive finite element and boundary element coupling. In Proceedings Boundary Value Problems and Integral Equations on Non-Smooth Domains, eds. M. Costabel, M. Dauge, S. Nicaise. Lecture notes in pure and applied mathematics 167, Marcel Dekker New York 1995, 47-58. CMP 95:03
  • 5. C. Carstensen: Efficiency of a posteriori BEM error estimates for first-kind integral equations on quasi-uniform meshes. Math. Comp. 65 (1996), 69-84. CMP 96:03
  • 6. C. Carstensen: A posteriori error estimate for the symmetric coupling of finite elements and boundary elements, Computing (in press), 1996.
  • 7. C. Carstensen, E.P. Stephan: A posteriori error estimates for boundary element methods. Math. Comp. 64 (1995) 483-500. MR 95f:65211
  • 8. C. Carstensen, E.P. Stephan: Adaptive boundary element methods for some first-kind integral equations. SIAM J. Numer. Anal. (1996), to appear.
  • 9. C. Carstensen, E.P. Stephan: Adaptive boundary element methods for transmission problems. J. Austr. Math. Soc. Ser. B (1996), to appear.
  • 10. G.A. Chandler: Discrete norms for the convergence of boundary element methods. Proceedings of the Center for Mathematics and its Applications. Australian National University 26 (1991) 62-78. MR 92k:65175
  • 11. G.A. Chandler, I.H. Sloan: Spline qualocation methods for boundary integral equations. Numer. Math. 58 (1990) 537-567. MR 91m:65323
  • 12. M. Costabel: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-626. MR 89h:35090
  • 13. M. Costabel, E.P. Stephan: Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. Banach Center Publ. 15 (1985) 175-251. MR 88f:35037
  • 14. B. Faermann: Lokale a-posteriori-Fehlerschätzer bei der Diskretisierung von Randintegralgleichungen. PhD-thesis, University of Kiel, FRG (1993).
  • 15. N. Heuer: hp-Versionen der Randelementemethode. PhD-thesis, University of Hannover, FRG (1992).
  • 16. J.L Lions, E. Magenes: Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York: Springer 1972. MR 50:2670
  • 17. T. von Petersdorff: Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximation mit Randelementmethoden. PhD-thesis, TH Darmstadt, FRG (1989).
  • 18. E. Rank: Adaptive boundary element methods. in: C.A. Brebbia, W.L. Wendland and G. Kuhn, eds., Boundary Elements 9, Vol. 1, 259-273. Springer Verlag Heidelberg 1987. CMP 21:03
  • 19. J. Saranen and W.L. Wendland: Local residual-type error estimates for adaptive boundary element methods on closed curves. Appl. Anal. 48 (1993) 37-50. MR 95e:65112
  • 20. I.H. Sloan, A. Spence: The Galerkin method for integral equations of the first kind with logarithmic kernel: Theory. IMA J. Numer. Anal. 8 (1988) 105-122. MR 90d:65230a
  • 21. E.P. Stephan, M. Suri: The hp-version of the boundary element method on polygonal domains with quasiuniform meshes. Math. Model. Numer. Anal. 25 (1991) 783-807. MR 92m:65154
  • 22. E.P. Stephan, W.L. Wendland: Remarks on Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica 1 (1976) 93-123.
  • 23. E.P. Stephan, W.L. Wendland, G.C. Hsiao: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci. 1 (1979) 265-321. MR 82e:31003
  • 24. W.L. Wendland, De-hao Yu: Adaptive boundary element methods for strongly elliptic integral equations. Numer. Math. 53 (1988) 539-558. MR 89h:65194
  • 25. W.L. Wendland and De-hao Yu: A posteriori local error estimates of boundary element methods with some pseudo-differential equations on closed curves. J. Comput. Math. 10 (1992) 273-289. MR 93d:65105

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65N38, 65N15, 65R20, 45L10

Retrieve articles in all journals with MSC (1991): 65N38, 65N15, 65R20, 45L10

Additional Information

Carsten Carstensen
Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany

Keywords: Integral equations, boundary element method, a~posteriori error estimate, adaptive algorithm, collocation method, qualocation method
Received by editor(s): February 20, 1995
Received by editor(s) in revised form: November 6, 1995, and January 26, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society