Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Stieltjes polynomials and Lagrange interpolation


Authors: Sven Ehrich and Giuseppe Mastroianni
Journal: Math. Comp. 66 (1997), 311-331
MSC (1991): Primary 42A05, 65D05
DOI: https://doi.org/10.1090/S0025-5718-97-00808-9
MathSciNet review: 1388888
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Bounds are proved for the Stieltjes polynomial $E_{n+1} $, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials $\P $. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials $G_n$. Applying these results, convergence theorems are proved for the Lagrange interpolation process with respect to the zeros of $E_{n+1} $, and for the extended Lagrange interpolation process with respect to the zeros of $\P E_{n+1}$ in the uniform and weighted $L^p$ norms. The corresponding Lebesgue constants are of optimal order.


References [Enhancements On Off] (What's this?)

  • 1. P. BARRUCAND: Intégration Numérique, Abscisses de Kronrod-Patterson et Polynômes de Szegö. C.R. Acad. Sci. Paris, Ser. A, 270, 1970, 147-158. MR 42:2657
  • 2. H. BRASS: Quadraturverfahren. Vandenhoeck & Ruprecht, Göttingen, 1977. MR 56:1675
  • 3. G. CRISCUOLO AND G. MASTROIANNI: Fourier and Lagrange Operators in some weighted Sobolev-type spaces. Acta Math. Scient. Szeged. 60, 1995, 131-148. MR 96e:41006
  • 4. G. CRISCUOLO, G. MASTROIANNI AND P. NEVAI: Mean convergence of the derivatives of extended Lagrange interpolation with additional nodes, Math. Nachr. 163, 1993, 73-92. MR 94g:65011
  • 5. G. CRISCUOLO, G. MASTROIANNI AND D. OCCORSIO: Convergence of extended Lagrange interpolation, Math. Comp. 55, 1990, 197-212. MR 91c:65008
  • 6. G. CRISCUOLO, G. MASTROIANNI AND P. VÉRTESI: Pointwise simultaneous convergence of the extended Lagrange interpolation with additional knots, Math. Comp. 59, 1992, 515-531. MR 93a:41003
  • 7. G. CRISCUOLO, L. SCUDERI: Error bounds for product quadrature rules in $L_1$ weighted norm, Calcolo, 31, 1994, 73-93. CMP 96:03
  • 8. B. DELLA VECCHIA, G. MASTROIANNI AND P. VÉRTESI: Boundedness of Lagrange and Hermite operators. Preprint.
  • 9. L. DURAND: Nicholson-type integrals for products of Gegenbauer functions and related topics. In: R. Askey, Ed., Theory and Application of Special Functions, Academic Press, New York, 1975, 353-374. MR 53:13679
  • 10. S. EHRICH: Asymptotic Properties of Stieltjes Polynomials and Gauss-Kronrod Quadrature Formulae, J. Approx. Theory 82, 1995, 287-303. CMP 95:16
  • 11. K.-J. FÖRSTER: A Comparison Theorem for Linear Functionals and its application in Quadrature. In Numerical Integration, Proc. Conf. Oberwolfach, G. Hämmerlin, ed., ISNM 57, Birkhäuser, Basel 1982, 66-76.
  • 12. K.-J. FÖRSTER: Schranken für die Varianz und die Gewichte von Quadraturformeln. Habilitationsschrift, Tech. Univ. Braunschweig, Germany, 1987.
  • 13. K.-J. FÖRSTER: Inequalities for Legendre polynomials and application to quadrature. J. Comp. Appl. Math. 33, 1981, 85-95.
  • 14. K.-J. FÖRSTER AND K. PETRAS: On Estimates for the weights in Gaussian Quadrature in the ultraspherical case. Math. Comp. 55, 1990, 243-264. MR 91d:65043
  • 15. W. GAUTSCHI: Gauss-Kronrod Quadrature - A Survey. In Numerical Methods and Approximation Theory III, G.V. Milovanovi\'{c}, ed., Ni[??]s 1988, 39-66. MR 89k:41035
  • 16. W. GAUTSCHI AND S.E. NOTARIS: An Algebraic and Numerical Study of Gauss-Kronrod Quadrature Formulae for Jacobi Weight Functions. Math. Comp. 51, 1988, 231-248. MR 89f:65031
  • 17. W. GAUTSCHI AND T.J. RIVLIN: A Family of Gauss-Kronrod Quadrature Formulae. Math. Comp. 51, 1988, 749-754. MR 89m:65029
  • 18. J. GERONIMUS: On a set of Polynomials. Annals Math. 31, 1930, 681-686.
  • 19. D. LUBINSKY, A. MÁTÉ AND P. NEVAI: Quadrature sums involving $p$th powers of polynomials. SIAM J. Math. Anal. 18, 1987, 531-544. MR 89h:41058
  • 20. G. MASTROIANNI: Uniform Convergence of derivatives of Lagrange interpolation. J. Comp. Appl. Math. 43, 1992, 37-51. MR 93j:41006
  • 21. G. MASTROIANNI: Approximation of functions by extended Lagrange interpolation. In Approximation and Computation, A Festschrift In Honor of Walter Gautschi, R.V.M. Zahar, ed., ISNM 119, Birkhäuser, 1995, 409-420.
  • 22. G. MASTROIANNI AND P. NEVAI: Mean Convergence of Lagrange Interpolation. J. Comp. Appl. Math. 34, 1991, 385-396. MR 92b:41007
  • 23. G. MASTROIANNI AND P. VÉRTESI: Weighted $L^p$ error of Lagrange interpolation, to appear in J. Approx. Theory.
  • 24. G. MASTROIANNI AND P. VÉRTESI: Error estimates of product quadrature rules. In Numerical Integration IV, Proc. Conf. Oberwolfach, H. Brass and G. Hämmerlin, eds., ISNM 112, Birkhäuser, 1993, 241-252.
  • 25. G. MONEGATO: A Note on Extended Gaussian Quadrature Rules. Math. Comp. 30, 1976, 812-817. MR 55:13746
  • 26. G. MONEGATO: Positivity of Weights of Extended Gauss-Legendre Quadrature Rules. Math. Comp. 32, 1978, 243-245. MR 56:17009
  • 27. G. MONEGATO: An Overview of Results and Questions Related to Kronrod Schemes. In Numerische Integration, Proc. Conf. Oberwolfach, G. Hämmerlin, ed., ISNM 57, Birkhäuser 1979. MR 81m:65033
  • 28. G. MONEGATO: Stieltjes Polynomials and Related Quadrature Rules. SIAM Review 24, 1982, 137-158. MR 83d:65067
  • 29. B. MUCKENHOUPT AND R. WHEEDEN: Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Studia Math. 55, 1976, 279-294. MR 54:5720
  • 30. P. NEVAI: Mean Convergence of Lagrange Interpolation, III. Trans. Amer. Math. Soc. 282, 1984, 669-698. MR 85c:41009
  • 31. P. NEVAI: Hilbert Transform and Lagrange Interpolation. J. Approx. Theory 60, 1990, 360-363. MR 91a:42008
  • 32. D. OCCORSIO: Una buona matrice di nodi, Calcolo 30, 1993, 107-126. MR 96f:41005
  • 33. D. OCCORSIO: Convergence of extended Lagrange interpolation in weighted $L_p$, Calcolo, 31, 1994, 47-61. CMP 96:03
  • 34. F. PEHERSTORFER: On the Asymptotic Behaviour of Functions of the Second Kind and Stieltjes Polynomials and on the Gauss-Kronrod Quadrature Formulas. J. Approx. Theory 70, 1992, 156-190. MR 93h:42020
  • 35. T.J. RIVLIN: Chebyshev Polynomials. Wiley-Interscience, 1990. MR 92a:41016
  • 36. G. SZEGÖ: Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören. Math. Ann. 110, 1934, 501-513.
  • 37. G. SZEGÖ: Orthogonal Polynomials. AMS Colloq. Publ. 23, Providence, RI 1975. MR 51:8724
  • 38. Y. Xu: Mean Convergence of Generalized Jacobi Series and interpolating polynomials, I. J. Approx. Theory 72, 1993, 237-251. MR 94d:41010

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 42A05, 65D05

Retrieve articles in all journals with MSC (1991): 42A05, 65D05


Additional Information

Sven Ehrich
Affiliation: Universität Hildesheim, Institut für Mathematik, D–31141 Hildesheim, Germany
Email: ehrich@informatik.uni-hildesheim.de

Giuseppe Mastroianni
Affiliation: Università degli Studi della Basilicata, Dipartimento di Matematica, I–85100 Potenza, Italy
Email: mastroianni@pzvx85.cineca.it

DOI: https://doi.org/10.1090/S0025-5718-97-00808-9
Keywords: Stieltjes polynomials, Lagrange interpolation, extended Lagrange interpolation, convergence
Received by editor(s): June 20, 1995
Received by editor(s) in revised form: December 4, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society