Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)


On convergence of numerical schemes for
hyperbolic conservation laws with
stiff source terms

Author: Abdallah Chalabi
Journal: Math. Comp. 66 (1997), 527-545
MSC (1991): Primary 35L65, 65M05, 65M10
MathSciNet review: 1397441
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We deal in this study with the convergence of a class of numerical schemes for scalar conservation laws including stiff source terms. We suppose that the source term is dissipative but it is not necessarily a Lipschitzian function. The convergence of the approximate solution towards the entropy solution is established for first and second order accurate MUSCL and for splitting semi-implicit methods.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 35L65, 65M05, 65M10

Retrieve articles in all journals with MSC (1991): 35L65, 65M05, 65M10

Additional Information

Abdallah Chalabi
Affiliation: CNRS-UMR MIP 5640 - UFR MIG Universite P. Sabatier, 118, route de Narbonne 31062 Toulouse cedex France

PII: S 0025-5718(97)00817-X
Keywords: Conservation laws, stiff source term, Runge-Kutta method, splitting method, implicit scheme, TVD, TVB scheme, entropy solution
Received by editor(s): September 19, 1995
Received by editor(s) in revised form: March 29, 1996
Article copyright: © Copyright 1997 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia