On convergence of numerical schemes for

hyperbolic conservation laws with

stiff source terms

Author:
Abdallah Chalabi

Journal:
Math. Comp. **66** (1997), 527-545

MSC (1991):
Primary 35L65, 65M05, 65M10

DOI:
https://doi.org/10.1090/S0025-5718-97-00817-X

MathSciNet review:
1397441

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We deal in this study with the convergence of a class of numerical schemes for scalar conservation laws including stiff source terms. We suppose that the source term is dissipative but it is not necessarily a Lipschitzian function. The convergence of the approximate solution towards the entropy solution is established for first and second order accurate MUSCL and for splitting semi-implicit methods.

**1.**F. Benkhaldoun and A. Chalabi,*Characteristic based scheme for hyperbolic conservation laws with source terms*, Submitted.**2.**A. C. Berkenbosch, E. F. Kaasschieter, and J. H. M. Ten Thije Boonkkamp,*The numerical wave speed for one-dimensional scalar conservation laws with source terms*. Preprint, Dept. of Math. and Comp. Sci. Eindhoven University of Technology, (1994).**3.**A. Chalabi,*Stable upwind schemes for hyperbolic conservation laws with source, terms*, IMA J. Numer. Anal., 12 (1992), pp. 217-242. MR**93c:65108****4.**G. Q. Chen, C. D. Levermore and T. P. Liu,*Hyperbolic conservation laws with stiff relaxation terms and entropy*, Comm. Pure Appl. Math., 47, (1994) pp 787-830. MR**95h:35133****5.**P. Colella, A. Majda and V. Roytburd,*Theoretical and numerical structure for reacting shock waves*, SIAM J. Sc. Stat. Comput., 7 (1986), pp. 1059-1080. MR**87i:76037****6.**M. G. Crandall, A. Majda,*Monotone difference approximations for scalar conservation conservation laws*, Math. Comp. , 34, (1980), pp. 1-21. MR**81b:65079****7.**B. Engquist and B. Sjogreen,*Robust difference approximations of stiff inviscid detonation waves*, SIAM J. Sci. Comput., to appear.**8.**J. B. Goodman and R. Leveque,*On the accuracy of stable schemes for 2D scalar conservation laws*, Math. Comp., 45, (1985), pp. 15-21. MR**86f:65149****9.**S. Jin,*Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms*, J. Comput. Phys., 122, (1995), pp. 51-67. MR**96g:65084****10.**S. Jin and C. D. Levermore,*Numerical schemes for hyperbolic systems with stiff relaxation terms*, J. Comput. Phys., Preprint.**11.**S. N. Kru\v{z}kov,*First order quasi-linear equations in several independent variables*, Math. USSR-Sb., 10, (1970), pp. 217-243. MR**42:2159****12.**J. Leveque and H. C. Yee,*A study of numerical methods for hyperbolic conservation laws with stiff source terms*, J. Comput. Phys., 86, (1990), pp. 187-210. MR**90k:76009****13.**T. P. Liu,*Hyperbolic conservation laws with relaxation*, Commun. Math. Phys., 108, (1987), pp. 153-175. MR**88f:35092****14.**A. Majda,*A qualitative model for dynamic combustion*, SIAM J. Appl. Math., 40, (1981), pp.70-93. MR**82j:35096****15.**S. Osher,*Riemann solvers, the entropy condition, and difference approximations*, SIAM J. Numer. Anal., 21, (1984), pp.217-235. MR**86d:65119****16.**R. B. Pemper,*Numerical methods for hyperbolic conservation with stiff II.*, SIAM J. Sci. Comput., 14, (1993), pp. 824-859.**17.**R. Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing.*, Math. of Comp., 40, (1983), pp. 91-106. MR**84a:65075****18.**H. J. Schroll, A. Tveito and R. Winther,*An error bound for finite difference schemes applied to a stiff system of conservation laws*, Preprint 1994-3, Dept of Informatics, University of Oslo.**19.**H. J. Schroll and R. Winther,*Finite difference schemes for conservation laws with source terms*, IMA J. Numer. Anal., 16, (1996), pp. 201-215. CMP**96:10****20.**C. W. Shu and S. Osher,*Efficient implementation of essentially non oscillatory shock capturing schemes*, J. Comput. Phys. 77, (1988), pp. 439-471. MR**89g:65113****21.**E. Tadmor,*Numerical viscosity and the entropy condition for conservative difference schemes*, Math. Comp. 43 (1984), pp.369-382. MR**86g:65163****22.**T. Tang and Z. H. Teng,*Error bounds for fractional step methods for conservation laws with source terms*, SIAM J. Numer. Anal., 32,(1995), pp. 110-127. MR**95m:65155****23.**B. Van Leer,*Towards the ultimate conservative difference schemes V. A second order sequal to Godunov's method*, J. Comput. Phys., 32, (1979), pp. 101-136.**24.**B. Van Leer,*On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe*, SIAM J. Sci. Stat. Comput., 5, (1984) , pp.1-19. MR**86a:65085****25.**J. P. Vila,*Convergence and error estimates in finite volume schemes for multidimensional scalar conservation laws; II Implicit monotone schemes*, Preprint (1995).**26.**G. B. Whitham,*Linear and nonlinear waves*, J. Wiley (1974). MR**58:3905**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
35L65,
65M05,
65M10

Retrieve articles in all journals with MSC (1991): 35L65, 65M05, 65M10

Additional Information

**Abdallah Chalabi**

Affiliation:
CNRS-UMR MIP 5640 - UFR MIG Universite P. Sabatier, 118, route de Narbonne 31062 Toulouse cedex France

Email:
chalabi@mip.ups-tlse.fr

DOI:
https://doi.org/10.1090/S0025-5718-97-00817-X

Keywords:
Conservation laws,
stiff source term,
Runge-Kutta method,
splitting method,
implicit scheme,
TVD,
TVB scheme,
entropy solution

Received by editor(s):
September 19, 1995

Received by editor(s) in revised form:
March 29, 1996

Article copyright:
© Copyright 1997
American Mathematical Society