On convergence of numerical schemes for

hyperbolic conservation laws with

stiff source terms

Author:
Abdallah Chalabi

Journal:
Math. Comp. **66** (1997), 527-545

MSC (1991):
Primary 35L65, 65M05, 65M10

DOI:
https://doi.org/10.1090/S0025-5718-97-00817-X

MathSciNet review:
1397441

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We deal in this study with the convergence of a class of numerical schemes for scalar conservation laws including stiff source terms. We suppose that the source term is dissipative but it is not necessarily a Lipschitzian function. The convergence of the approximate solution towards the entropy solution is established for first and second order accurate MUSCL and for splitting semi-implicit methods.

**1.**F. Benkhaldoun and A. Chalabi,*Characteristic based scheme for hyperbolic conservation laws with source terms*, Submitted.**2.**A. C. Berkenbosch, E. F. Kaasschieter, and J. H. M. Ten Thije Boonkkamp,*The numerical wave speed for one-dimensional scalar conservation laws with source terms*. Preprint, Dept. of Math. and Comp. Sci. Eindhoven University of Technology, (1994).**3.**A. Chalabi,*Stable upwind schemes for hyperbolic conservation laws with source terms*, IMA J. Numer. Anal.**12**(1992), no. 2, 217–241. MR**1164582**, https://doi.org/10.1093/imanum/12.2.217**4.**Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu,*Hyperbolic conservation laws with stiff relaxation terms and entropy*, Comm. Pure Appl. Math.**47**(1994), no. 6, 787–830. MR**1280989**, https://doi.org/10.1002/cpa.3160470602**5.**Phillip Colella, Andrew Majda, and Victor Roytburd,*Theoretical and numerical structure for reacting shock waves*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 4, 1059–1080. MR**857783**, https://doi.org/10.1137/0907073**6.**Michael G. Crandall and Andrew Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), no. 149, 1–21. MR**551288**, https://doi.org/10.1090/S0025-5718-1980-0551288-3**7.**B. Engquist and B. Sjogreen,*Robust difference approximations of stiff inviscid detonation waves*, SIAM J. Sci. Comput., to appear.**8.**Jonathan B. Goodman and Randall J. LeVeque,*On the accuracy of stable schemes for 2D scalar conservation laws*, Math. Comp.**45**(1985), no. 171, 15–21. MR**790641**, https://doi.org/10.1090/S0025-5718-1985-0790641-4**9.**Shi Jin,*Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms*, J. Comput. Phys.**122**(1995), no. 1, 51–67. MR**1358521**, https://doi.org/10.1006/jcph.1995.1196**10.**S. Jin and C. D. Levermore,*Numerical schemes for hyperbolic systems with stiff relaxation terms*, J. Comput. Phys., Preprint.**11.**S. N. Kružkov,*First order quasilinear equations with several independent variables.*, Mat. Sb. (N.S.)**81 (123)**(1970), 228–255 (Russian). MR**0267257****12.**R. J. LeVeque and H. C. Yee,*A study of numerical methods for hyperbolic conservation laws with stiff source terms*, J. Comput. Phys.**86**(1990), no. 1, 187–210. MR**1033905**, https://doi.org/10.1016/0021-9991(90)90097-K**13.**Tai-Ping Liu,*Hyperbolic conservation laws with relaxation*, Comm. Math. Phys.**108**(1987), no. 1, 153–175. MR**872145****14.**Andrew Majda,*A qualitative model for dynamic combustion*, SIAM J. Appl. Math.**41**(1981), no. 1, 70–93. MR**622874**, https://doi.org/10.1137/0141006**15.**Stanley Osher,*Riemann solvers, the entropy condition, and difference approximations*, SIAM J. Numer. Anal.**21**(1984), no. 2, 217–235. MR**736327**, https://doi.org/10.1137/0721016**16.**R. B. Pemper,*Numerical methods for hyperbolic conservation with stiff II.*, SIAM J. Sci. Comput., 14, (1993), pp. 824-859.**17.**Richard Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), no. 161, 91–106. MR**679435**, https://doi.org/10.1090/S0025-5718-1983-0679435-6**18.**H. J. Schroll, A. Tveito and R. Winther,*An error bound for finite difference schemes applied to a stiff system of conservation laws*, Preprint 1994-3, Dept of Informatics, University of Oslo.**19.**H. J. Schroll and R. Winther,*Finite difference schemes for conservation laws with source terms*, IMA J. Numer. Anal., 16, (1996), pp. 201-215. CMP**96:10****20.**Chi-Wang Shu and Stanley Osher,*Efficient implementation of essentially nonoscillatory shock-capturing schemes*, J. Comput. Phys.**77**(1988), no. 2, 439–471. MR**954915**, https://doi.org/10.1016/0021-9991(88)90177-5**21.**Eitan Tadmor,*Numerical viscosity and the entropy condition for conservative difference schemes*, Math. Comp.**43**(1984), no. 168, 369–381. MR**758189**, https://doi.org/10.1090/S0025-5718-1984-0758189-X**22.**T. Tang and Zhen Huan Teng,*Error bounds for fractional step methods for conservation laws with source terms*, SIAM J. Numer. Anal.**32**(1995), no. 1, 110–127. MR**1313707**, https://doi.org/10.1137/0732004**23.**B. Van Leer,*Towards the ultimate conservative difference schemes V. A second order sequal to Godunov's method*, J. Comput. Phys., 32, (1979), pp. 101-136.**24.**Bram van Leer,*On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe*, SIAM J. Sci. Statist. Comput.**5**(1984), no. 1, 1–20. MR**731878**, https://doi.org/10.1137/0905001**25.**J. P. Vila,*Convergence and error estimates in finite volume schemes for multidimensional scalar conservation laws; II Implicit monotone schemes*, Preprint (1995).**26.**G. B. Whitham,*Linear and nonlinear waves*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0483954**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
35L65,
65M05,
65M10

Retrieve articles in all journals with MSC (1991): 35L65, 65M05, 65M10

Additional Information

**Abdallah Chalabi**

Affiliation:
CNRS-UMR MIP 5640 - UFR MIG Universite P. Sabatier, 118, route de Narbonne 31062 Toulouse cedex France

Email:
chalabi@mip.ups-tlse.fr

DOI:
https://doi.org/10.1090/S0025-5718-97-00817-X

Keywords:
Conservation laws,
stiff source term,
Runge-Kutta method,
splitting method,
implicit scheme,
TVD,
TVB scheme,
entropy solution

Received by editor(s):
September 19, 1995

Received by editor(s) in revised form:
March 29, 1996

Article copyright:
© Copyright 1997
American Mathematical Society