Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Rational eigenvectors in spaces of ternary forms

Author: Larry Lehman
Journal: Math. Comp. 66 (1997), 833-839
MSC (1991): Primary 11E45; Secondary 11F37, 11G05
MathSciNet review: 1397445
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the explicit computation of linear combinations of ternary quadratic forms which are eigenvectors, with rational eigenvalues, under all Hecke operators. We use this process to construct, for each elliptic curve $E$ of rank zero and conductor $N < 2000$ for which $N$ or $N/4$ is squarefree, a weight 3/2 cusp form which is (potentially) a preimage of the weight two newform $\phi _{E}$ under the Shimura correspondence.

References [Enhancements On Off] (What's this?)

  • 1. B. J. Birch, Hecke actions on classes of ternary quadratic forms, Computational Number Theory, Walter de Gruyter & Co., Berlin, 1991, pp. 191-212. MR 93i:11047
  • 2. S. Böcherer and R. Schulze-Pillot, The Dirichlet series of Koecher and Maass and modular forms of weight 3/2, Math. Z. 209 (1992), 273-287. MR 93b:11053
  • 3. M. Bungert, Construction of a cuspform of weight 3/2, Arch. Math. 60 (1993), 530-534. MR 94f:11035
  • 4. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge, England, 1992. MR 93m:11053
  • 5. -, Dimensions and $W$-splits of cusp forms of level $N \le 1000$, Unpublished table (1990).
  • 6. -, Modular elliptic curves: conductors from 1001 to 2000, Unpublished table (1993).
  • 7. M. Eichler, Quadratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin, 1952. MR 14:540a
  • 8. G. Frey, Der Rang der Lösungen von $y^{2}=x^{3} \pm p^{3}$ über $\mathbb {Q}$, Manuscripta Math. 48 (1984), 71-101. MR 86g:11033
  • 9. B. H. Gross, Heights and the special values of $L$-series, Number Theory, Montreal 1985 (CMS Conf. Proc.), vol. 7, Amer. Math. Soc., Providence, 1987, pp. 115-187. MR 89c:11082
  • 10. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York, 1984. MR 86c:11040
  • 11. W. Kohnen, Newforms of half-integral weight, J. reine angew. Math. 333 (1982), 32-72. MR 84b:10038
  • 12. L. Lehman, Rational points on elliptic curves with complex multiplication by the ring of integers in $\mathbb {Q}(\sqrt {-7})$, J. Number Theory 27 (3) (1987), 253-272. MR 89a:11059
  • 13. -, Levels of positive definite ternary quadratic forms, Math. Comp. 58 (197) (1992), 399-417. MR 92f:11057
  • 14. P. Ponomarev, Ternary quadratic forms and Shimura's correspondence, Nagoya Math. J. 81 (1981), 123-151. MR 83a:10043
  • 15. B. Schoeneberg, Elliptic Modular Functions, An Introduction, Springer-Verlag, New York, 1974. MR 54:236
  • 16. R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen, Invent. Math. 75 (1984), 283-299. MR 86d:11042
  • 17. G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481. MR 48:10989
  • 18. H. P. F. Swinnerton-Dyer and B. J. Birch, Elliptic curves and modular functions, Lecture Notes in Mathematics, vol. 476, Springer-Verlag, Berlin, 1975. MR 52:5685
  • 19. J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334. MR 85d:11046

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11E45, 11F37, 11G05

Retrieve articles in all journals with MSC (1991): 11E45, 11F37, 11G05

Additional Information

Larry Lehman
Affiliation: Department of Mathematics, Mary Washington College, Fredericksburg, Virginia 22401

Keywords: Quadratic forms, modular forms, elliptic curves
Received by editor(s): January 17, 1995
Received by editor(s) in revised form: February 7, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society