A numerical scheme based on

mean value solutions for

the helmholtz equation

on triangular grids

Authors:
M. G. Andrade and J. B. R. do Val

Journal:
Math. Comp. **66** (1997), 477-493

MSC (1991):
Primary 35A40, 65N06; Secondary 35J25, 65N15, 65N22

MathSciNet review:
1401937

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A numerical treatment for the Dirichlet boundary value problem on regular triangular grids for homogeneous *Helmholtz* equations is presented, which also applies to the convection-diffusion problems. The main characteristic of the method is that an accuracy estimate is provided in analytical form with a better evaluation than that obtained with the usual finite difference method. Besides, this classical method can be seen as a truncated series approximation to the proposed method. The method is developed from the analytical solutions for the Dirichlet problem on a ball together with an error evaluation of an integral on the corresponding circle, yielding accuracy. Some numerical examples are discussed and the results are compared with other methods, with a consistent advantage to the solution obtained here.

**1.**Garrett Birkhoff and Surender Gulati,*Optimal few-point discretizations of linear source problems*, SIAM J. Numer. Anal.**11**(1974), 700–728. MR**0362933****2.**R. Courant and D. Hilbert,*Methods of mathematical physics. Vol. II: Partial differential equations*, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. MR**0140802****3.**Philip J. Davis and Philip Rabinowitz,*Methods of numerical integration*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. MR**0448814****4.**E. C. Gartland Jr.,*Discrete weighted mean approximation of a model convection-diffusion equation*, SIAM J. Sci. Statist. Comput.**3**(1982), no. 4, 460–472. MR**677099**, 10.1137/0903030**5.**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****6.**G. H. Golub and C. F. V. Loan,*Matrix computations*, The John Hopkins Univ. Press, Baltimore, 1984.**7.**Jan Górowski,*On some properties of the solution of the Dirichlet problem for the Helmholtz equation in the interior and exterior of a circle*, Demonstratio Math.**19**(1986), no. 2, 303–315. MR**895003****8.**Murli M. Gupta, Ram P. Manohar, and John W. Stephenson,*A single cell high order scheme for the convection-diffusion equation with variable coefficients*, Internat. J. Numer. Methods Fluids**4**(1984), no. 7, 641–651. MR**754894**, 10.1002/fld.1650040704**9.**Murli M. Gupta, Ram P. Manohar, and John W. Stephenson,*High-order difference schemes for two-dimensional elliptic equations*, Numer. Methods Partial Differential Equations**1**(1985), no. 1, 71–80. MR**868052**, 10.1002/num.1690010108**10.**L. V. Kantorovich and V. I. Krylov,*Approximate methods of higher analysis*, Translated from the 3rd Russian edition by C. D. Benster, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen, 1958. MR**0106537****11.**R. P. Manohar and J. W. Stephenson,*Single cell high order difference methods for the Helmholtz equation*, J. Comput. Phys.**51**(1983), 444-453.**12.**Tarek P. Mathew,*Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. I. Algorithms and numerical results*, Numer. Math.**65**(1993), no. 4, 445–468. MR**1231895**, 10.1007/BF01385762

Tarek P. Mathew,*Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. II. Convergence theory*, Numer. Math.**65**(1993), no. 4, 469–492. MR**1231896**, 10.1007/BF01385763**13.**G. D. Stubley, G. D. Raithby and A. B. Strong,*Proposal for a new discrete method based on an assessment of discretization errors*, Num. Heat Transfer**3**(1980), 411-428.**14.**J. B. R. do Val and M. G. Andrade Fo.,*On the numerical solution of the Dirichlet problem for Helmholtz equation*, Applied Math. Letters**9**(1996), 85-89.

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
35A40,
65N06,
35J25,
65N15,
65N22

Retrieve articles in all journals with MSC (1991): 35A40, 65N06, 35J25, 65N15, 65N22

Additional Information

**M. G. Andrade**

Affiliation:
Depto. de Ciencias de Computacao e Estatistica, Instituto de Ciencias Matematica de Sao Carlos, Universidade de Sao Paulo, C.P. 668 - Sao Carlos - SP, 13.560-970 - Brasil

Email:
Marinho@icmsc.usp.br

**J. B. R. do Val**

Affiliation:
Depto. de Telemática, Fac. de Eng. Elétrica, Universidade Estadual de Campinas - UNICAMP, C.P. 6101, 13081-970 - Campinas - SP, Brasil

Email:
jbosco@dt.fee.unicamp.br

DOI:
https://doi.org/10.1090/S0025-5718-97-00825-9

Keywords:
Numerical solutions for partial differential equations,
elliptic differential equations,
Helmholtz equations,
non-standard difference approximation,
convection-diffusion equations

Received by editor(s):
July 31, 1995

Additional Notes:
This work was partially supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 300573/95-2(NV) and 300721/86-2(NV)

Article copyright:
© Copyright 1997
American Mathematical Society