A numerical scheme based on

mean value solutions for

the helmholtz equation

on triangular grids

Authors:
M. G. Andrade and J. B. R. do Val

Journal:
Math. Comp. **66** (1997), 477-493

MSC (1991):
Primary 35A40, 65N06; Secondary 35J25, 65N15, 65N22

DOI:
https://doi.org/10.1090/S0025-5718-97-00825-9

MathSciNet review:
1401937

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A numerical treatment for the Dirichlet boundary value problem on regular triangular grids for homogeneous *Helmholtz* equations is presented, which also applies to the convection-diffusion problems. The main characteristic of the method is that an accuracy estimate is provided in analytical form with a better evaluation than that obtained with the usual finite difference method. Besides, this classical method can be seen as a truncated series approximation to the proposed method. The method is developed from the analytical solutions for the Dirichlet problem on a ball together with an error evaluation of an integral on the corresponding circle, yielding accuracy. Some numerical examples are discussed and the results are compared with other methods, with a consistent advantage to the solution obtained here.

**1.**G. Birkhoff and S. Gulati,*Optimal few-point discretizations of linear source problems*, SIAM J. Numer. Anal.**11**(4) (1974), 700-728. MR**50:15371****2.**R. Courant and D. Hilbert,*Methods of mathematical physics (partial differential equations)*, vol. II, John Wiley & Sons, New York, 1962. MR**25:4216****3.**P. J. Davis and P. Rabinowitz,*Methods of numerical integration*, Academic Press, New York, 1975. MR**56:7119****4.**E. C. Gartland Jr.,*Discrete weighted mean approximation of model convection-diffusion equation*, SIAM J. Sci. Stat. Comp.**3**(4) (1982), 460-472. MR**84j:65058****5.**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, New York, 1983. MR**86c:35035****6.**G. H. Golub and C. F. V. Loan,*Matrix computations*, The John Hopkins Univ. Press, Baltimore, 1984.**7.**J. Górowski,*On some properties of the solution of the Dirichlet problem for the Helmholtz equation in the interior and exterior of a circle*, Demonstratio Math.**19**(2) (1986), 303-315. MR**88j:35040****8.**M. M. Gupta, R. P. Manohar and J. W. Stephenson,*A single cell high order scheme for the convection-diffusion equation with variable coefficients*, Int. J. Numer. Methods Fluids**4**(1984), 641-651. MR**85f:76010****9.**M. M. Gupta, R. P. Manohar and J. W. Stephenson,*High-order difference schemes for two-dimensional elliptic equation*, Numer. Methods for Partial Diff. Equations**1**(1985), 71-80. MR**87m:65150****10.**L. V. Kantorovich and V. I. Krylov,*Approximate methods of higher analysis*, Intersc. Publish. Inc., New York, 1958. MR**21:5268****11.**R. P. Manohar and J. W. Stephenson,*Single cell high order difference methods for the Helmholtz equation*, J. Comput. Phys.**51**(1983), 444-453.**12.**T. P. Mathew,*Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I and part II: algorithms and numerical results*, Numer. Math.**65**(4) (1993), 445-492. MR**94m:65171**; MR**94m:65172****13.**G. D. Stubley, G. D. Raithby and A. B. Strong,*Proposal for a new discrete method based on an assessment of discretization errors*, Num. Heat Transfer**3**(1980), 411-428.**14.**J. B. R. do Val and M. G. Andrade Fo.,*On the numerical solution of the Dirichlet problem for Helmholtz equation*, Applied Math. Letters**9**(1996), 85-89.

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
35A40,
65N06,
35J25,
65N15,
65N22

Retrieve articles in all journals with MSC (1991): 35A40, 65N06, 35J25, 65N15, 65N22

Additional Information

**M. G. Andrade**

Affiliation:
Depto. de Ciencias de Computacao e Estatistica, Instituto de Ciencias Matematica de Sao Carlos, Universidade de Sao Paulo, C.P. 668 - Sao Carlos - SP, 13.560-970 - Brasil

Email:
Marinho@icmsc.usp.br

**J. B. R. do Val**

Affiliation:
Depto. de Telemática, Fac. de Eng. Elétrica, Universidade Estadual de Campinas - UNICAMP, C.P. 6101, 13081-970 - Campinas - SP, Brasil

Email:
jbosco@dt.fee.unicamp.br

DOI:
https://doi.org/10.1090/S0025-5718-97-00825-9

Keywords:
Numerical solutions for partial differential equations,
elliptic differential equations,
Helmholtz equations,
non-standard difference approximation,
convection-diffusion equations

Received by editor(s):
July 31, 1995

Additional Notes:
This work was partially supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 300573/95-2(NV) and 300721/86-2(NV)

Article copyright:
© Copyright 1997
American Mathematical Society