Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of Galois groups
over function fields


Authors: Thomas Mattman and John McKay
Journal: Math. Comp. 66 (1997), 823-831
MSC (1991): Primary 12F10, 12Y05
DOI: https://doi.org/10.1090/S0025-5718-97-00831-4
MathSciNet review: 1401943
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Symmetric function theory provides a basis for computing Galois groups which is largely independent of the coefficient ring. An exact algorithm has been implemented over $\mathbb Q (t_1,t_2,\ldots ,t_m)$ in Maple for degree up to 8. A table of polynomials realizing each transitive permutation group of degree 8 as a Galois group over the rationals is included.


References [Enhancements On Off] (What's this?)

  • 1. G. Butler and J. McKay, `The transitive groups of degree up to 11', Comm. Algebra 11 (1983), 863-911. MR 84f:20005
  • 2. D. Casperson and J. McKay, `Symmetric functions, $m$-sets, and Galois groups', Math. Comp. Vol. 63, No. 208 (1994), 749-757. MR 95a:12001
  • 3. -, `An ideal decomposition algorithm', preliminary report, AMS Abstracts 13 (1992) 405.
  • 4. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993 (ISBN 3-540-55640-0). MR 94i:11105
  • 5. J. Conway, A. Hulpke, J. McKay, ` On transitive permutation groups' (to appear).
  • 6. H. Darmon, private communication (1986).
  • 7. H. Darmon and D. Ford, `Computational verification of $M_{11}$ and $M_{12}$ as Galois groups over $\mathbb Q $', Comm. Alg. 17 (1989), 2941-2943. MR 91b:11146
  • 8. F-P. Heider and P. Kolvenbach, `The construction of SL(2,3)-polynomials', J. Number Theory 19 (1984) 392-411. MR 86g:11063
  • 9. A. Hulpke, Konstruktion transitiver Permutationsgruppen. PhD. thesis, RWTH-Aachen, Aachen, Germany, 1996.
  • 10. T. W. Mattman, The computation of Galois groups over function fields. Master's thesis, McGill University, Montréal, Québec, Canada, December 1992.
  • 11. B. H. Matzat, `Konstruktion von Zahl- und Funktionenkörpern mit vorgegebener Galoisgruppe', J. Reine und Angew. Math. 349 (1984), 179-220. MR 85j:11164
  • 12. J. McKay, `Advances in computational Galois theory', in Computers in algebra, (Martin C. Tangora, Ed.), Lecture notes in pure and applied mathematics., vol. 111, pp.99-101, (1988). CMP 90:14
  • 13. J. McKay and E. Regener, `Actions of permutation groups on r-sets', Comm. Algebra 13 (1985) 619-630. MR 86j:20004
  • 14. E.A. O'Brien, `The groups of order 256', J. Algebra 143 (1991) 219-235. MR 93e:20029
  • 15. M. Olivier, Calcul des groupes de Galois de degré 8,9,10, et 11. Université Bordeaux I, 12 Oct. 1991 et 12 Fev. 1993.
  • 16. E. Skrzipczyk, Charaktertafeln von $p$-Gruppen. Diplomarbeit, Lehrstuhl D fur Mathematik, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany, 1992.
  • 17. L. Soicher, The computation of Galois groups. Master's thesis, University of Concordia, Montréal, Québec, Canada, April 1981.
  • 18. -, `An Algorithm for Computing Galois Groups', in Computational Group Theory (M. D. Atkinson, Ed.), pp. 291-296, Academic Press, 1984. MR 86d:12002b
  • 19. L. Soicher and J. McKay, `Computing Galois groups over the rationals', J. Number Theory 20 (1985), 273-281. MR 87a:12002
  • 20. Gene W. Smith, `Some Polynomials over $\mathbb Q (t)$ and their Galois groups.' (to appear in Math. Comp.).
  • 21. R. P. Stauduhar, The automatic determination of Galois groups. Ph. D. Dissertation, University of California, Berkeley, 1969.
  • 22. -, `The determination of Galois groups', Math. Comp. 27 (1973) 981-996. MR 48:6054
  • 23. S. Strelitz, `On the Routh-Hurwitz Problem', Amer. Math. Monthly 8 (1977) 542-544. MR 57:288
  • 24. B. van der Waerden, Modern Algebra. Vol. I, Ungar, (1949) Chapter 7.61. MR 10:587b

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 12F10, 12Y05

Retrieve articles in all journals with MSC (1991): 12F10, 12Y05


Additional Information

Thomas Mattman
Affiliation: Mathematics Department, McGill University, Montréal, H3A 2K6, Canada
Email: mattman@math.mcgill.ca

John McKay
Affiliation: Centre Interuniversitaire en Calcul Mathématique Algébrique Concordia University Montréal, H3G 1M8, Canada
Email: mckay@cs.concordia.ca

DOI: https://doi.org/10.1090/S0025-5718-97-00831-4
Keywords: Galois groups, polynomials, computation
Received by editor(s): June 12, 1995
Received by editor(s) in revised form: December 7, 1995
Additional Notes: Research supported by NSERC and FCAR of Québec.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society