Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The Rabin-Monier theorem
for Lucas pseudoprimes

Author: F. Arnault
Journal: Math. Comp. 66 (1997), 869-881
MSC (1991): Primary 11Y11; Secondary 11A51, 11R11
MathSciNet review: 1408370
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give bounds on the number of pairs $(P,Q)$ with $0\le P,Q<n$ such that a composite number $n$ is a strong Lucas pseudoprime with respect to the parameters $(P,Q)$.

References [Enhancements On Off] (What's this?)

  • 1. F. Arnault, Rabin-Miller primality test: Composite numbers which pass it, Math. Comp. 64 (1995), 355-361. MR 95c:11152
  • 2. -, Constructing Carmichael numbers which are strong pseudoprimes to several bases, J. Symbolic Comput. 20 (1995), 151-161. CMP 96:08
  • 3. F. Arnault and G. Robin, Sur une fonction associée aux entiers quadratiques, Preprint.
  • 4. R. Baillie and S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417. MR 81j:10005
  • 5. G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), 915-926. MR 94d:11004
  • 6. Z. Mo and J. P. Jones, A new probabilistic primality test using Lucas sequences, Preprint.
  • 7. L. Monier, Evaluation and comparison of two efficient primality testing algorithms, Theoret. Comput. Sci. 11 (1980), 97-108. MR 82a:68078
  • 8. C. Pomerance, J. L. Selfridge, and S. S. Wagstraff, The pseudoprimes to $25\cdot 10^9$, Math. Comp. 35 (1980), 1003-1026. MR 82g:10030
  • 9. M. O. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12 (1980), 128-138. MR 81f:10003
  • 10. H. C. Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull. 20 (1977), 133-143. MR 56:5414

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11Y11, 11A51, 11R11

Retrieve articles in all journals with MSC (1991): 11Y11, 11A51, 11R11

Additional Information

F. Arnault
Affiliation: Université de Limoges, Faculté des Sciences, URA 1586, Laboratoire d’Arithmétique de Calcul formel et d’Optimisation, 123, av Albert Thomas, 87060 Limoges Cedex, France

Keywords: Primality testing, Lucas pseudoprimes.
Received by editor(s): August 30, 1994
Received by editor(s) in revised form: February 28, 1995, and November 6, 1995
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society