Numerical solution of the scalar double-well problem allowing microstructure

Authors:
Carsten Carstensen and Petr Plecháč

Journal:
Math. Comp. **66** (1997), 997-1026

MSC (1991):
Primary 65N15, 65N30, 35J70, 73C60

MathSciNet review:
1415798

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The direct numerical solution of a non-convex variational problem () typically faces the difficulty of the finite element approximation of rapid oscillations. Although the oscillatory discrete minimisers are properly related to corresponding Young measures and describe real physical phenomena, they are costly and difficult to compute. In this work, we treat the scalar double-well problem by numerical solution of the relaxed problem () leading to a (degenerate) convex minimisation problem. The problem () has a minimiser and a related stress field which is known to coincide with the stress field obtained by solving () in a generalised sense involving Young measures. If is a finite element solution, is the related discrete stress field. We prove a priori and a posteriori estimates for in and weaker weighted estimates for . The a posteriori estimate indicates an adaptive scheme for automatic mesh refinements as illustrated in numerical experiments.

**[Bal89]**J. M. Ball,*A version of the fundamental theorem for Young measures*, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207–215. MR**1036070**, 10.1007/BFb0024945**[BC94]**Bernard Brighi and Michel Chipot,*Approximated convex envelope of a function*, SIAM J. Numer. Anal.**31**(1994), no. 1, 128–148. MR**1259969**, 10.1137/0731007**[BJ87]**J. M. Ball and R. D. James,*Fine phase mixtures as minimizers of energy*, Arch. Rational Mech. Anal.**100**(1987), no. 1, 13–52. MR**906132**, 10.1007/BF00281246**[BJ92]**J. M. Ball and R. D. James, Proposed experimental tests of the theory of fine microstructure and the two-well problem,*Phil. Trans. R. Soc. Lond. A.*, 338:389-450, 1992.**[BP90]**Patricia Bauman and Daniel Phillips,*A nonconvex variational problem related to change of phase*, Appl. Math. Optim.**21**(1990), no. 2, 113–138. MR**1019397**, 10.1007/BF01445160**[BS94]**Susanne C. Brenner and L. Ridgway Scott,*The mathematical theory of finite element methods*, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR**1278258****[CC92]**Michel Chipot and Charles Collins,*Numerical approximations in variational problems with potential wells*, SIAM J. Numer. Anal.**29**(1992), no. 4, 1002–1019. MR**1173182**, 10.1137/0729061**[Chi91]**M. Chipot,*Numerical analysis of oscillations in nonconvex problems*, Numer. Math.**59**(1991), no. 8, 747–767. MR**1128031**, 10.1007/BF01385808**[CL91]**Charles Collins and Mitchell Luskin,*Optimal-order error estimates for the finite element approximation of the solution of a nonconvex variational problem*, Math. Comp.**57**(1991), no. 196, 621–637. MR**1094944**, 10.1090/S0025-5718-1991-1094944-0**[Cle75]**Ph. Clément,*Approximation by finite element functions using local regularization*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique**9**(1975), no. R-2, 77–84 (English, with Loose French summary). MR**0400739****[Dac89]**Bernard Dacorogna,*Direct methods in the calculus of variations*, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR**990890****[DK91]**David Kinderlehrer and Pablo Pedregal,*Characterizations of Young measures generated by gradients*, Arch. Rational Mech. Anal.**115**(1991), no. 4, 329–365. MR**1120852**, 10.1007/BF00375279**[EG92]**Richard D. Mabry,*Sets which are well-distributed and invariant relative to all isometry invariant total extensions of Lebesgue measure*, Real Anal. Exchange**16**(1990/91), no. 2, 425–459. MR**1112037****[Fre90]**Donald A. French,*On the convergence of finite-element approximations of a relaxed variational problem*, SIAM J. Numer. Anal.**27**(1990), no. 2, 419–436. MR**1043613**, 10.1137/0727025**[Fri94]**Gero Friesecke,*A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems*, Proc. Roy. Soc. Edinburgh Sect. A**124**(1994), no. 3, 437–471. MR**1286914**, 10.1017/S0308210500028730**[GKR86]**Jonathan Goodman, Robert V. Kohn, and Luis Reyna,*Numerical study of a relaxed variational problem from optimal design*, Comput. Methods Appl. Mech. Engrg.**57**(1986), no. 1, 107–127. MR**859964**, 10.1016/0045-7825(86)90073-3**[GT81]**Morton E. Gurtin and Roger Temam,*On the antiplane shear problem in finite elasticity*, J. Elasticity**11**(1981), no. 2, 197–206. MR**614374**, 10.1007/BF00043860**[KP91]**David Kinderlehrer and Pablo Pedregal,*Weak convergence of integrands and the Young measure representation*, SIAM J. Math. Anal.**23**(1992), no. 1, 1–19. MR**1145159**, 10.1137/0523001**[Nas84]**Stephen G. Nash,*Newton-type minimization via the Lánczos method*, SIAM J. Numer. Anal.**21**(1984), no. 4, 770–788. MR**749370**, 10.1137/0721052**[NW92]**R. A. Nicolaides and N. J. Walkington, Computation of microstructure utilizing Young measure representations, In C.A. Rogers and R.A. Rogers, editors,*Recent Advances in Adaptive and Sensory Materials and their Applications*, pages 131-141, Lancaster, 1992. Technomic Publishing Co.**[NW95]**R. A. Nicolaides and Noel J. Walkington,*Strong convergence of numerical solutions to degenerate variational problems*, Math. Comp.**64**(1995), no. 209, 117–127. MR**1262281**, 10.1090/S0025-5718-1995-1262281-0**[Ped92]**Pablo Pedregal,*Jensen’s inequality in the calculus of variations*, Differential Integral Equations**7**(1994), no. 1, 57–72. MR**1250939****[Rou]**T. Roubí\v{c}ek, Relaxation in optimization theory and variational calculus, DeGruyter, Berlin 1997.**[Ver94]**R. Verfürth,*A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations*, Math. Comp.**62**(1994), no. 206, 445–475. MR**1213837**, 10.1090/S0025-5718-1994-1213837-1

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
65N15,
65N30,
35J70,
73C60

Retrieve articles in all journals with MSC (1991): 65N15, 65N30, 35J70, 73C60

Additional Information

**Carsten Carstensen**

Affiliation:
Mathematical Institute, Oxford University, 24–29 St. Giles, Oxford OX1 3LB, United Kingdom

Email:
cc@numerik.uni-kiel.de

**Petr Plecháč**

Affiliation:
Mathematical Institute, Oxford University, 24–29 St. Giles, Oxford OX1 3LB, United Kingdom

DOI:
https://doi.org/10.1090/S0025-5718-97-00849-1

Keywords:
Non-convex minimisation,
Young measures,
microstructure

Received by editor(s):
May 8, 1995

Received by editor(s) in revised form:
May 3, 1996

Additional Notes:
The work of the first author was supported by the EC under HCM ERB CH BG CT 920007, the work of the second author was supported under EPSRC grant GR/JO3466.

Article copyright:
© Copyright 1997
American Mathematical Society