Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

New estimates for Ritz vectors


Author: Andrew V. Knyazev
Journal: Math. Comp. 66 (1997), 985-995
MSC (1991): Primary 65F35
DOI: https://doi.org/10.1090/S0025-5718-97-00855-7
MathSciNet review: 1415802
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following estimate for the Rayleigh-Ritz method is proved:

\begin{displaymath}| \tilde \lambda - \lambda | |( \tilde u , u )| \le { \| A \tilde u - \tilde \lambda \tilde u \| } \sin \angle \{ u ; \tilde U \}, \ \| u \| =1. \end{displaymath}

Here $A$ is a bounded self-adjoint operator in a real Hilbert/euclidian space, $\{ \lambda , u \}$ one of its eigenpairs, $\tilde U$ a trial subspace for the Rayleigh-Ritz method, and $\{ \tilde \lambda , \tilde u \}$ a Ritz pair. This inequality makes it possible to analyze the fine structure of the error of the Rayleigh-Ritz method, in particular, it shows that $ |( \tilde u , u )| \le C \epsilon ^2, $ if an eigenvector $u$ is close to the trial subspace with accuracy $\epsilon $ and a Ritz vector $\tilde u$ is an $\epsilon $ approximation to another eigenvector, with a different eigenvalue. Generalizations of the estimate to the cases of eigenspaces and invariant subspaces are suggested, and estimates of approximation of eigenspaces and invariant subspaces are proved.


References [Enhancements On Off] (What's this?)

  • 1. I. Babuska and J. Osborn, Eigenvalue problems. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, Vol. II, pages 642-787. Elsevier Science Publishers, North-Holland, 1991.
  • 2. James H. Bramble, Andrew Knyazev and Joseph E. Pasciak, A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Technical Report UCD/CCM Report 66, Center for Computational Mathematics, University of Colorado at Denver, 1995. Submitted to Advances in Computational Mathematics.
  • 3. F. Chatelin. Spectral approximations of linear operators. Academic Press, New York, 1983. MR 86d:65071
  • 4. C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal., 7(1):1-46, 1970. MR 41:9044
  • 5. J. Descloux, N. Nassif, and J. Rappaz. On spectral approximation. Part 1. The problem of convergence. RAIRO, Numerical Analysis, 12(2):97-112, 1978. MR 58:3404a
  • 6. R. Gruber and J. Rappaz. Finite Element Methods in Linear Ideal Magnetohydrodynamics. Springer Series in Computational Physics. Springer-Verlag, New York, 1985. MR 87e:76162
  • 7. T. Kato. On the upper and lower bounds of eigenvalues. J. Phys. Soc. Japan, 4:334-339, 1949. MR 12:447b
  • 8. T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, New-York, 1976. MR 53:11389
  • 9. A. V. Knyazev. Computation of eigenvalues and eigenvectors for mesh problems: algorithms and error estimates. Dept. Numerical Math. USSR Academy of Sciences, Moscow, 1986. In Russian.
  • 10. A. V. Knyazev. Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness. Math. Notes, 38(5-6):998-1002, 1986. MR 87h:65068
  • 11. A. V. Knyazev. Convergence rate estimates for iterative methods for mesh symmetric eigenvalue problem. Soviet J. Numerical Analysis and Math. Modelling, 2(5):371-396, 1987. MR 88i:65057
  • 12. A. V. Knyazev. New estimates for Ritz vectors. Technical Report 677, CIMS NYU, New York, 1994.
  • 13. M.A. Krasnosel'skii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, and Y. Ya. Stetsenko. Approximate Solutions of Operator Equations. Wolters-Noordhoff, Groningen, 1972. Translated from Russian. MR 52:6515
  • 14. B. N. Parlett. The Symmetric Eigenvalue problem. Prentice-Hall, 1980. MR 81j:65063
  • 15. Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halsted Press, New York, 1992. MR 93h:65052
  • 16. G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973. MR 56:1747
  • 17. H. F. Weinberger. Error bounds in the Rayleigh-Ritz approximation of eigenvectors. J. Res. Nat. Bur. Standards, 64 B(4):217-225, 1960. MR 23:B2158
  • 18. H. F. Weinberger. Variational Methods for Eigenvalue Approximation. SIAM, 1974.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65F35

Retrieve articles in all journals with MSC (1991): 65F35


Additional Information

Andrew V. Knyazev
Affiliation: Department of Mathematics, University of Colorado at Denver, Denver, Colorado 80217
Email: knyazev@na-net.ornl.gov

DOI: https://doi.org/10.1090/S0025-5718-97-00855-7
Keywords: Eigenvalue problem, Rayleigh--Ritz method, approximation, error estimate
Received by editor(s): May 10, 1995
Received by editor(s) in revised form: September 5, 1995, and June 3, 1996
Additional Notes: This research was supported by the National Science Foundation under grant NSF-CCR-9204255 and was performed while the author was visiting the Courant Institute.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society