Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

New estimates for Ritz vectors


Author: Andrew V. Knyazev
Journal: Math. Comp. 66 (1997), 985-995
MSC (1991): Primary 65F35
MathSciNet review: 1415802
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following estimate for the Rayleigh-Ritz method is proved:

\begin{displaymath}| \tilde \lambda - \lambda | |( \tilde u , u )| \le { \| A \tilde u - \tilde \lambda \tilde u \| } \sin \angle \{ u ; \tilde U \}, \ \| u \| =1. \end{displaymath}

Here $A$ is a bounded self-adjoint operator in a real Hilbert/euclidian space, $\{ \lambda , u \}$ one of its eigenpairs, $\tilde U$ a trial subspace for the Rayleigh-Ritz method, and $\{ \tilde \lambda , \tilde u \}$ a Ritz pair. This inequality makes it possible to analyze the fine structure of the error of the Rayleigh-Ritz method, in particular, it shows that $ |( \tilde u , u )| \le C \epsilon ^2, $ if an eigenvector $u$ is close to the trial subspace with accuracy $\epsilon $ and a Ritz vector $\tilde u$ is an $\epsilon $ approximation to another eigenvector, with a different eigenvalue. Generalizations of the estimate to the cases of eigenspaces and invariant subspaces are suggested, and estimates of approximation of eigenspaces and invariant subspaces are proved.


References [Enhancements On Off] (What's this?)

  • 1. I. Babuska and J. Osborn, Eigenvalue problems. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, Vol. II, pages 642-787. Elsevier Science Publishers, North-Holland, 1991.
  • 2. James H. Bramble, Andrew Knyazev and Joseph E. Pasciak, A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Technical Report UCD/CCM Report 66, Center for Computational Mathematics, University of Colorado at Denver, 1995. Submitted to Advances in Computational Mathematics.
  • 3. Françoise Chatelin, Spectral approximation of linear operators, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With a foreword by P. Henrici; With solutions to exercises by Mario Ahués. MR 716134 (86d:65071)
  • 4. Chandler Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal. 7 (1970), 1–46. MR 0264450 (41 #9044)
  • 5. Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97–112, iii (English, with French summary). MR 0483400 (58 #3404a)
  • 6. Ralf Gruber and Jacques Rappaz, Finite element methods in linear ideal magnetohydrodynamics, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1985. MR 800851 (87e:76162)
  • 7. Tosio Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan 4 (1949), 334–339. MR 0038738 (12,447b)
  • 8. Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617 (53 #11389)
  • 9. A. V. Knyazev. Computation of eigenvalues and eigenvectors for mesh problems: algorithms and error estimates. Dept. Numerical Math. USSR Academy of Sciences, Moscow, 1986. In Russian.
  • 10. A. V. Knyazev, Sharp a priori error estimates for the Rayleigh-Ritz method with no assumptions on fixed sign or compactness, Mat. Zametki 38 (1985), no. 6, 900–907, 958 (Russian). MR 823428 (87h:65068)
  • 11. A. V. Knyazev, Convergence rate estimates for iterative methods for a mesh symmetric eigenvalue problem, Soviet J. Numer. Anal. Math. Modelling 2 (1987), no. 5, 371–396. Translated from the Russian. MR 915330 (88i:65057)
  • 12. A. V. Knyazev. New estimates for Ritz vectors. Technical Report 677, CIMS NYU, New York, 1994.
  • 13. M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate solution of operator equations, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR 0385655 (52 #6515)
  • 14. Beresford N. Parlett, The symmetric eigenvalue problem, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980. Prentice-Hall Series in Computational Mathematics. MR 570116 (81j:65063)
  • 15. Youcef Saad, Numerical methods for large eigenvalue problems, Algorithms and Architectures for Advanced Scientific Computing, Manchester University Press, Manchester; Halsted Press [John Wiley & Sons, Inc.], New York, 1992. MR 1177405 (93h:65052)
  • 16. Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR 0443377 (56 #1747)
  • 17. H. F. Weinberger, Error bounds in the Rayleigh-Ritz approximation of eigenvectors, J. Res. Nat. Bur. Standards Sect. B 64B (1960), 217–225. MR 0129121 (23 #B2158)
  • 18. H. F. Weinberger. Variational Methods for Eigenvalue Approximation. SIAM, 1974.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 65F35

Retrieve articles in all journals with MSC (1991): 65F35


Additional Information

Andrew V. Knyazev
Affiliation: Department of Mathematics, University of Colorado at Denver, Denver, Colorado 80217
Email: knyazev@na-net.ornl.gov

DOI: http://dx.doi.org/10.1090/S0025-5718-97-00855-7
PII: S 0025-5718(97)00855-7
Keywords: Eigenvalue problem, Rayleigh--Ritz method, approximation, error estimate
Received by editor(s): May 10, 1995
Received by editor(s) in revised form: September 5, 1995, and June 3, 1996
Additional Notes: This research was supported by the National Science Foundation under grant NSF-CCR-9204255 and was performed while the author was visiting the Courant Institute.
Article copyright: © Copyright 1997 American Mathematical Society