Universal binary Hermitian forms
Authors:
A. G. Earnest and Azar Khosravani
Journal:
Math. Comp. 66 (1997), 11611168
MSC (1991):
Primary 11E39; Secondary 11E20, 11E41
MathSciNet review:
1422787
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We will determine (up to equivalence) all of the integral positive definite Hermitian lattices in imaginary quadratic fields of class number 1 that represent all positive integers.
 [1]
W. Chan, M. H. Kim and S. Raghavan, Ternary universal integral quadratic forms over real quadratic fields, preprint.
 [2]
L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49 (1947), 3956.
 [3]
Larry
J. Gerstein, Classes of definite Hermitian forms, Amer. J.
Math. 100 (1978), no. 1, 81–97. MR 0466063
(57 #5946)
 [4]
N.
Jacobson, A note on hermitian forms, Bull. Amer. Math. Soc. 46 (1940), 264–268. MR 0001957
(1,325d), http://dx.doi.org/10.1090/S000299041940071873
 [5]
Arnold
A. Johnson, Integral representations of hermitian forms over local
fields, J. Reine Angew. Math. 229 (1968),
57–80. MR
0225755 (37 #1348)
 [6]
Irving
Kaplansky, Ternary positive quadratic forms that represent all odd
positive integers, Acta Arith. 70 (1995), no. 3,
209–214. MR 1322563
(96b:11052)
 [7]
C.
G. Lekkerkerker, Geometry of numbers, Bibliotheca Mathematica,
Vol. VIII, WoltersNoordhoff Publishing, Groningen; NorthHolland
Publishing Co., AmsterdamLondon, 1969. MR 0271032
(42 #5915)
 [8]
Hans
Maass, Über die Darstellung total positiver Zahlen des
Körpers 𝑅(5) als Summe von drei Quadraten, Abh. Math.
Sem. Hansischen Univ. 14 (1941), 185–191 (German).
MR
0005505 (3,163a)
 [9]
J. P. PrietoCox, Representation of positive definite Hermitian forms, Ph.D. Dissertation, Ohio State University (1990).
 [10]
S. Ramanujan, On the expression of a number in the form , Proc. Cambridge Phil. Soc. 19 (1917), 1121.
 [11]
Goro
Shimura, Arithmetic of unitary groups, Ann. of Math. (2)
79 (1964), 369–409. MR 0158882
(28 #2104)
 [12]
Margaret
F. Willerding, Determination of all classes of
positive quaternary quadratic forms which represent all (positive)
integers, Bull. Amer. Math. Soc. 54 (1948), 334–337. MR 0024939
(9,571e), http://dx.doi.org/10.1090/S000299041948089984
 [13]
Fu
Zu Zhu, On the classification of positive definite unimodular
Hermitian forms, Chinese Sci. Bull. 36 (1991),
no. 18, 1506–1511. MR 1147259
(93a:11027)
 [1]
 W. Chan, M. H. Kim and S. Raghavan, Ternary universal integral quadratic forms over real quadratic fields, preprint.
 [2]
 L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49 (1947), 3956.
 [3]
 L. J. Gerstein, Classes of definite Hermitian forms, Amer. J. Math. 100 (1978), pp. 8197. MR 57:5946
 [4]
 N. Jacobson, A note on hermitian forms, Bull. Amer. Math. Soc. 46 (1940), pp. 264268. MR 1:325d
 [5]
 A. A. Johnson, Integral representations of hermitian forms over local fields, J. Reine Angew. Math. 229 (1968), pp. 5780. MR 37:1348
 [6]
 I. Kaplansky, Ternary positive quadratic forms that represent all odd positive integers, Acta Arith. 70 (1995), pp. 209214. MR 96b:11052
 [7]
 C. G. Lekkerkerker, Geometry of Numbers, NorthHolland, AmsterdamLondon, 1969. MR 42:5915
 [8]
 H. Maass, Über die Darstellung total positiver Zählen des Korpers als Summe von drei Quadraten, Abh. Math. Sem. Hamburg, 14, (1941), pp. 18591. MR 3:163a
 [9]
 J. P. PrietoCox, Representation of positive definite Hermitian forms, Ph.D. Dissertation, Ohio State University (1990).
 [10]
 S. Ramanujan, On the expression of a number in the form , Proc. Cambridge Phil. Soc. 19 (1917), 1121.
 [11]
 G. Shimura, Arithmetic of unitary groups, Ann. of Math. 79 (1964), pp. 369409. MR 28:2104
 [12]
 M. F. Willerding, Determination of all classes of positive quaternary quadratic forms which represent all (positive) integers, Bull. Amer. Math. Soc. 54 (1948), pp. 334337. MR 9:571e
 [13]
 F. Z. Zhu, On the classification of positive definite unimodular hermitian forms, Chinese Sci. Bull. 36 (1991), 15061511. MR 93a:11027
Similar Articles
Retrieve articles in Mathematics of Computation of the American Mathematical Society
with MSC (1991):
11E39,
11E20,
11E41
Retrieve articles in all journals
with MSC (1991):
11E39,
11E20,
11E41
Additional Information
A. G. Earnest
Affiliation:
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901–4408
Azar Khosravani
Affiliation:
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901–4408
Address at time of publication:
Department of Mathematics, University of Wisconsin, Oshkosh, Oshkosh, Wisconsin 549018631
DOI:
http://dx.doi.org/10.1090/S0025571897008600
PII:
S 00255718(97)008600
Received by editor(s):
May 15, 1996
Additional Notes:
Research supported in part by a grant from the National Security Agency
Article copyright:
© Copyright 1997
American Mathematical Society
