Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Universal binary Hermitian forms


Authors: A. G. Earnest and Azar Khosravani
Journal: Math. Comp. 66 (1997), 1161-1168
MSC (1991): Primary 11E39; Secondary 11E20, 11E41
DOI: https://doi.org/10.1090/S0025-5718-97-00860-0
MathSciNet review: 1422787
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We will determine (up to equivalence) all of the integral positive definite Hermitian lattices in imaginary quadratic fields of class number 1 that represent all positive integers.


References [Enhancements On Off] (What's this?)

  • [1] W. Chan, M. H. Kim and S. Raghavan, Ternary universal integral quadratic forms over real quadratic fields, preprint.
  • [2] L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49 (1947), 39-56.
  • [3] Larry J. Gerstein, Classes of definite Hermitian forms, Amer. J. Math. 100 (1978), no. 1, 81–97. MR 0466063, https://doi.org/10.2307/2373877
  • [4] N. Jacobson, A note on hermitian forms, Bull. Amer. Math. Soc. 46 (1940), pp. 264-268. MR 1:325d
  • [5] Arnold A. Johnson, Integral representations of hermitian forms over local fields, J. Reine Angew. Math. 229 (1968), 57–80. MR 0225755, https://doi.org/10.1515/crll.1968.229.57
  • [6] Irving Kaplansky, Ternary positive quadratic forms that represent all odd positive integers, Acta Arith. 70 (1995), no. 3, 209–214. MR 1322563
  • [7] C. G. Lekkerkerker, Geometry of numbers, Bibliotheca Mathematica, Vol. VIII, Wolters-Noordhoff Publishing, Groningen; North-Holland Publishing Co., Amsterdam-London, 1969. MR 0271032
  • [8] H. Maass, Über die Darstellung total positiver Zählen des Korpers $R(\sqrt 5)$ als Summe von drei Quadraten, Abh. Math. Sem. Hamburg, 14, (1941), pp. 185-91. MR 3:163a
  • [9] J. P. Prieto-Cox, Representation of positive definite Hermitian forms, Ph.D. Dissertation, Ohio State University (1990).
  • [10] S. Ramanujan, On the expression of a number in the form $ax^{2} + by^{2} +cz^{2} +du^{2}$, Proc. Cambridge Phil. Soc. 19 (1917), 11-21.
  • [11] Goro Shimura, Arithmetic of unitary groups, Ann. of Math. (2) 79 (1964), 369–409. MR 0158882, https://doi.org/10.2307/1970551
  • [12] M. F. Willerding, Determination of all classes of positive quaternary quadratic forms which represent all (positive) integers, Bull. Amer. Math. Soc. 54 (1948), pp. 334-337. MR 9:571e
  • [13] Fu Zu Zhu, On the classification of positive definite unimodular Hermitian forms, Chinese Sci. Bull. 36 (1991), no. 18, 1506–1511. MR 1147259

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11E39, 11E20, 11E41

Retrieve articles in all journals with MSC (1991): 11E39, 11E20, 11E41


Additional Information

A. G. Earnest
Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901–4408

Azar Khosravani
Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901–4408
Address at time of publication: Department of Mathematics, University of Wisconsin, Oshkosh, Oshkosh, Wisconsin 54901-8631

DOI: https://doi.org/10.1090/S0025-5718-97-00860-0
Received by editor(s): May 15, 1996
Additional Notes: Research supported in part by a grant from the National Security Agency
Article copyright: © Copyright 1997 American Mathematical Society