Universal binary Hermitian forms

Authors:
A. G. Earnest and Azar Khosravani

Journal:
Math. Comp. **66** (1997), 1161-1168

MSC (1991):
Primary 11E39; Secondary 11E20, 11E41

DOI:
https://doi.org/10.1090/S0025-5718-97-00860-0

MathSciNet review:
1422787

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We will determine (up to equivalence) all of the integral positive definite Hermitian lattices in imaginary quadratic fields of class number 1 that represent all positive integers.

**[1]**W. Chan, M. H. Kim and S. Raghavan,*Ternary universal integral quadratic forms over real quadratic fields*, preprint.**[2]**L. E. Dickson,*Quaternary quadratic forms representing all integers*, Amer. J. Math.**49**(1947), 39-56.**[3]**L. J. Gerstein,*Classes of definite Hermitian forms*, Amer. J. Math.**100**(1978), pp. 81-97. MR**57:5946****[4]**N. Jacobson,*A note on hermitian forms*, Bull. Amer. Math. Soc.**46**(1940), pp. 264-268. MR**1:325d****[5]**A. A. Johnson,*Integral representations of hermitian forms over local fields*, J. Reine Angew. Math.**229**(1968), pp. 57-80. MR**37:1348****[6]**I. Kaplansky,*Ternary positive quadratic forms that represent all odd positive integers*, Acta Arith.**70**(1995), pp. 209-214. MR**96b:11052****[7]**C. G. Lekkerkerker,*Geometry of Numbers*, North-Holland, Amsterdam-London, 1969. MR**42:5915****[8]**H. Maass,*Über die Darstellung total positiver Zählen des Korpers als Summe von drei Quadraten*, Abh. Math. Sem. Hamburg,**14**, (1941), pp. 185-91. MR**3:163a****[9]**J. P. Prieto-Cox,*Representation of positive definite Hermitian forms*, Ph.D. Dissertation, Ohio State University (1990).**[10]**S. Ramanujan,*On the expression of a number in the form*, Proc. Cambridge Phil. Soc.**19**(1917), 11-21.**[11]**G. Shimura,*Arithmetic of unitary groups*, Ann. of Math.**79**(1964), pp. 369-409. MR**28:2104****[12]**M. F. Willerding,*Determination of all classes of positive quaternary quadratic forms which represent all (positive) integers*, Bull. Amer. Math. Soc.**54**(1948), pp. 334-337. MR**9:571e****[13]**F. Z. Zhu,*On the classification of positive definite unimodular hermitian forms*, Chinese Sci. Bull.**36**(1991), 1506-1511. MR**93a:11027**

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
11E39,
11E20,
11E41

Retrieve articles in all journals with MSC (1991): 11E39, 11E20, 11E41

Additional Information

**A. G. Earnest**

Affiliation:
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901–4408

**Azar Khosravani**

Affiliation:
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901–4408

Address at time of publication:
Department of Mathematics, University of Wisconsin, Oshkosh, Oshkosh, Wisconsin 54901-8631

DOI:
https://doi.org/10.1090/S0025-5718-97-00860-0

Received by editor(s):
May 15, 1996

Additional Notes:
Research supported in part by a grant from the National Security Agency

Article copyright:
© Copyright 1997
American Mathematical Society