Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On Wendt's determinant


Author: Charles Helou
Journal: Math. Comp. 66 (1997), 1341-1346
MSC (1991): Primary {11C20; Secondary 11Y40, 11D41, 12E10}
DOI: https://doi.org/10.1090/S0025-5718-97-00870-3
MathSciNet review: 1423075
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Wendt's determinant of order $m$ is the circulant determinant $W_{m}$ whose $(i,j)$-th entry is the binomial coefficient $\binom m{|i-j|}$, for $1\leq i,j\leq m$. We give a formula for $W_{m}$, when $m$ is even not divisible by 6, in terms of the discriminant of a polynomial $T_{m+1}$, with rational coefficients, associated to $(X+1)^{m+1}-X^{m+1}-1$. In particular, when $m=p-1$ where $p$ is a prime $\equiv -1\ (mod\ 6)$, this yields a factorization of $W_{p-1}$ involving a Fermat quotient, a power of $p$ and the 6-th power of an integer.


References [Enhancements On Off] (What's this?)

  • 1. D. Boyd, The asymptotic behaviour of the binomial circulant determinant, J. Math. Anal. Appl. 86 (1982), 30-38. MR 83f:10007
  • 2. L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. 10 (1959), 686-690. MR 21:7182
  • 3. L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. 11 (1960), 730-733. MR 22:7974
  • 4. P. M. Cohn, Algebra, vol. 1, 2nd ed., J. Wiley and sons, New York, 1982. MR 83e:00002
  • 5. G. Fee, A. Granville, The prime factors of Wendt's binomial circulant determinant, Math. Comp. 57 (1991), 839-848. MR 92f:11183
  • 6. D. Ford, V. Jha, On Wendt's determinant and Sophie Germain's theorem, Experimental Math. 2 (1993), 113-119. MR 95b:11029
  • 7. J. S. Frame, Factors of the binomial circulant determinant, Fibonacci Quart. 18 (1980), 9-23. MR 81j:10007
  • 8. C. Helou, Cauchy's polynomials and Mirimanoff's conjecture, preprint.
  • 9. E. Lehmer, On a resultant connected with Fermat's last theorem, Bull. Amer. Math. Soc. 41 (1935), 864-867.
  • 10. P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer, New York, 1979. MR 81f:10023
  • 11. B. L. van der Waerden, Algebra, vol. 1, F. Ungar Pub. Co., New York, 1970. MR 41:8187a
  • 12. E. Wendt, Arithmetische Studien über den letzten Fermatschen Satz, welcher aussagt, dass die Gleichung $a^{n}=b^{n}+c^{n}$ für $n>2$ in ganzen Zahlen nicht auflösbar ist, J. reine angew. Math. 113 (1894), 335-347.

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): {11C20, 11Y40, 11D41, 12E10}

Retrieve articles in all journals with MSC (1991): {11C20, 11Y40, 11D41, 12E10}


Additional Information

Charles Helou
Affiliation: Penn State University, Delaware County, 25 Yearsley Mill Road, Media, Pennsylvania 19063
Email: cxh22@psu.edu

DOI: https://doi.org/10.1090/S0025-5718-97-00870-3
Received by editor(s): May 6, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society