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ON WENDT’S DETERMINANT

CHARLES HELOU

Abstract. Wendt’s determinant of order m is the circulant determinant Wm

whose (i, j)-th entry is the binomial coefficient
( m
|i−j|

)
, for 1 ≤ i, j ≤ m. We

give a formula for Wm, when m is even not divisible by 6, in terms of the
discriminant of a polynomial Tm+1, with rational coefficients, associated to
(X + 1)m+1 −Xm+1 − 1. In particular, when m = p − 1 where p is a prime
≡ −1 (mod 6), this yields a factorization of Wp−1 involving a Fermat quotient,
a power of p and the 6-th power of an integer.

Introduction

E. Wendt ([12]) introduced the m×m circulant determinant Wm with first row
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which is the resultant of the polynomials Xm − 1 and (X + 1)m − 1, in connection
with Fermat’s last theorem ([10]). E. Lehmer ([9]) proved that Wm = 0 if and only
if m ≡ 0 (mod 6), and that if p is an odd prime number, then Wp−1 is divisible by

pp−2qp(2), where qp(2) = 2p−1−1
p is a Fermat quotient. L. Carlitz ([2]) determined

Wp−1 modulo pp−1, which he then used to find high powers of p dividing Wp−1 in
an application in the same connection ([3]). Factorizations of the integers Wm for
m ≤ 50 were given in ([7]). The size of Wm was investigated in ([1]). Granville and
Fee ([5]) determined the prime factors of Wm for all even m ≤ 200 and consequently
improved on a classical result about Fermat’s equation. This was further improved
in ([6]), where similar computations were carried up to m ≤ 500.

In this article, we show that for all positive even integers m not divisible by 6,

Wm = −9hm(2m − 1)3(m+ 1)m−4|hm|D6
m,

where Dm is the discriminant of a polynomial with rational coefficients whose roots
are given by a rational function of those of (X + 1)m+1 −Xm+1 − 1, and hm = 2
or −1 according as m ≡ 2 or 4 (mod 6) respectively. In particular, if p is a prime
≡ −1 (mod 6) then Dp−1 is a rational integer and we have the factorization

Wp−1 = −1

9
qp(2)3pp−2D6

p−1.
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1. Preliminary results

For any positive integer m, let ζm be a primitive m-th root of unity in C. By a
well-known expression for circulant determinants ([12]),

Wm =

m−1∏
j=0

(
m−1∑
k=0

(
m

k

)
ζjkm

)
=

m−1∏
j=0

(
(1 + ζjm)m − 1

)
.(1)

Denote by n an odd integer ≥ 3 and consider the polynomial

Pn(X) = (X + 1)n −Xn − 1.(2)

Its relation to Wendt’s determinant is the following

Proposition 1. For any odd integer n ≥ 3, the discriminant of Pn is

D(Pn) = (−1)
n−1

2 nn−2Wn−1.

Proof. Since Pn has degree n − 1 and leading coefficient n, we have ([4] or [11])

D(Pn) = (−1)
(n−1)(n−2)

2 n−1R(Pn, P
′
n), where R(Pn, P

′
n) is the resultant of Pn and

its derivative P ′
n. We also have R(Pn, P

′
n) = (n(n − 1))n−1

∏n−2
k=1 Pn(yk), where

yk = 1
ζkn−1−1

(1 ≤ k ≤ n − 2) are the roots of P ′
n(X) = n((X + 1)n−1 −Xn−1) in

C. Every Pn(yk) =
1−(ζkn−1−1)n−1

(ζkn−1−1)n−1 , for 1 ≤ k ≤ n− 2. The product
∏n−2

k=1 (1− ζkn−1)

is the value at 1 of (Xn−1 − 1)/(X − 1), which is n− 1. Moreover, since n is odd,

n−2∏
k=1

(
1− (ζkn−1 − 1)n−1

)
=

n−2∏
k=0

((
1 + ζ

k+ n−1
2

n−1

)n−1

− 1

)
= Wn−1 ,

by (1). Hence
∏n−2

k=1 Pn(yk) = Wn−1

(n−1)n−1 and the result follows by substitution.

Now the polynomial Pn can be written ([8])

Pn(X) = X(X + 1)(X2 +X + 1)enFn(X),(3)

where Fn lies in Z[X ], is prime to X(X+1)(X2+X+1), has degree dn = n−3−2en
and leading coefficient n, with en = 0, 1 or 2 according as n ≡ 0, 2 or 1 (mod 3)
respectively. It follows from (2) and (3) that Fn(−X−1) = Fn(X) and Fn(1/X) =
Fn(X)/Xdn. Hence the set of roots z of Fn in C is partitioned into rn = dn/6
orbits of 6 elements each, namely

Orb(z) = {z, 1

z
, −z − 1, − 1

z + 1
, −z + 1

z
, − z

z + 1
}.(4)

Let z1, . . . , zrn be representatives of the different orbits of roots of Fn. For every
1 ≤ j ≤ rn, let gj be the monic polynomial whose roots are the elements of Orb(zj).
A straightforward computation gives

gj(X) = X6 + 3X5 + tjX
4 + (2tj − 5)X3 + tjX

2 + 3X + 1 (1 ≤ j ≤ rn)(5)

where

tj = 6− J(zj), J(X) =
(X2 +X + 1)3

X2(X + 1)2
(6)

and

Fn = n

rn∏
j=1

gj .(7)
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Moreover

gj(X) = X2(X + 1)2 (J(X)− J(zj)) (1 ≤ j ≤ rn).(8)

We now introduce the polynomial

Tn(X) =

rn∏
j=1

(X − tj)(9)

which lies in Q[X ], since the automorphisms of the splitting field of Fn over Q
permute the roots of Tn and thus leave its coefficients fixed. Substituting (8) into
(7) yields

Fn(X) = (−1)rnnX2rn(X + 1)2rnTn(6− J(X)).(10)

This relation, linking Tn to Fn and thus to Pn, facilitates computations with Tn.

2. Discriminants calculations

The resultant of two non-zero polynomials f, g ∈ C[X ] is denoted by R(f, g) and
the discriminant of f by D(f). The classic formula ([4]) D(fg) = D(f)D(g)R(f, g)2

yields by induction

Lemma 1. If f1, . . . , fm are non-constant polynomials in C[X ], then

D

(
m∏
i=1

fi

)
=

m∏
i=1

D(fi).
∏

1≤i<j≤m
R(fi, fj)

2.

Using this, the relation (3) allows, when en < 2, to express D(Fn) in terms of
D(Pn). Indeed,

Lemma 2. For a positive odd integer n 6≡ 1 (mod 6),

D(Fn) =
(−1)enD(Pn)

3enn4(en+1)
.

Proof. Assume first n ≡ −1 (mod 6), so that en = 1 and

Pn(X) = X(X + 1)(X2 +X + 1)Fn(X).

From Lemma 1,

D(Pn) = −3(Fn(0)Fn(−1)Fn(ζ3)Fn(ζ2
3 ))2D(Fn).

Now, for all odd n, Fn(0) = Fn(−1) = n, since these are the values of Pn(X)/X at
0 and −Pn(X)/(X + 1) at −1 respectively. On the other hand, setting Pn(X) =
(X2 +X + 1)Qn(X), with Qn ∈ Z[X ], we have

Fn(ζ3) =
Qn(ζ3)

ζ3(ζ3 + 1)
= − P ′

n(ζ3)

2ζ3 + 1
= −n

(
(ζ3 + 1)n−1 − ζn−1

3

)
2ζ3 + 1

= n.

Also, Fn(ζ2
3 ), being the complex conjugate of Fn(ζ3), is equal to n too. Hence

D(Pn) = −3n8D(Fn). Similarly, in the simpler case where n ≡ 3 (mod 6), we have
Pn(X) = X(X + 1)Fn(X) so that D(Pn) = (Fn(0)Fn(−1))2D(Fn) = n4D(Fn).

We now relate the discriminants of Fn, Tn and the gj ’s.

Lemma 3. For any odd integer n ≥ 3,

D(Fn) = n2(dn−1).

rn∏
j=1

D(gj).D(Tn)6.
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Proof. By (7) and Lemma 1, D(Fn) = n2(dn−1).
∏rn

j=1 D(gj).
∏

1≤i<j≤rn R(gi, gj)
2.

By (8), for 1 ≤ i, j ≤ rn, R(gi, gj) =
∏

z gj(z) = (J(zi) − J(zj))
6 (
∏

z z(z + 1))
2
,

where the products are for z ranging in Orb(zi), in which case J(z) = J(zi)
by (5) and (6). Moreover,

∏
z z = gj(0) = 1 and

∏
z(z + 1) = gj(−1) = 1.

Hence R(gj, gi) = R(gi, gj) = (J(zi) − J(zj))
6. On the other hand, D(Tn) =

(−1)rn(rn−1)/2
∏

i6=j(ti − tj) = ±∏i6=j(J(zj) − J(zi)), where the products are for

all i, j ∈ {1, . . . , rn} with i 6= j. Hence
∏

1≤i<j≤rn R(gi, gj)
2 =

∏
i6=j R(gi, gj) =∏

i6=j(J(zi)− J(zj))
6 = D(Tn)6 and the result follows.

Next, we compute the dicriminants of the gj’s.

Lemma 4. For any odd integer n ≥ 3 and 1 ≤ j ≤ rn,

D(gj) = −(4tj + 3)3(tj − 6)4.

Proof. Let Y = X + 1/X . Then gj(X) = X3hj(Y ), where hj(Y ) = Y 3 + 3Y 2 +
(tj − 3)Y + 2tj − 11; and g′j(X) = 3gj(X)/X + (X3 −X)h′j(Y ). Hence

D(gj) = −
∏
z

g′j(z) = −
(∏

z

z

)(∏
z

(z + 1)

)(∏
z

(z − 1)

)∏
z

h′j(z +
1

z
),

where the products are for z ∈ Orb(zj). From the proof of Lemma 3,
∏

z z =∏
z(z + 1) = 1. Also

∏
z(z − 1) = gj(1) = 4tj + 3. Moreover, y = z + 1/z

ranges through the roots of hj , each repeated twice, as z ranges through Orb(zj),

so that
∏

z h
′
j(z+1/z) =

(∏
y h

′
j(y)

)2

= D(hj)
2. Thus D(gj) = −(4tj + 3)D(hj)

2.

Now, setting U = Y + 1, we have hj(Y ) = fj(U) = U3 + (tj − 6)U + tj − 6.
By a well-known formula for the discriminant of a cubic polynomial ([11]), we get
D(hj) = D(fj) = −(4tj + 3)(tj − 6)2. Hence the result.

The product, appearing in Lemma 3, of the discriminants of the gj’s is given by

Lemma 5. For any odd integer n ≥ 3,

rn∏
j=1

D(gj) = (−1)rn34−7en(2n−1 − 1)3n4en−7

(
n− 1

2n

)2en(en−1)

.

Proof. By Lemma 4,

rn∏
j=1

D(gj) = (−1)rn

 rn∏
j=1

(4tj + 3)

3 rn∏
j=1

(tj − 6)

4

.(11)

Now
∏rn

j=1(4tj + 3) = (−4)rnTn(−3/4). Moreover, substituting X = 1 into (10)

and (3), we get (−4)rnnTn(−3/4) = Fn(1) = Pn(1)/(2.3en). Hence

rn∏
j=1

(4tj + 3) =
Fn(1)

n
=

2n−1 − 1

3enn
.(12)

Similarly,
∏rn

j=1(tj − 6) = (−1)rnTn(6), and substituting X = ζ3 into (10) yields

(−1)rnnTn(6) = Fn(ζ3). Let Qn(X) = X(X + 1)Fn(X); then Fn(ζ3) = −Qn(ζ3)
and, by (3), Pn(X) = (X2 +X+1)enQn(X). Taking en-th derivatives in the latter

relation and making X = ζ3, we get Qn(ζ3) = P
(en)
n (ζ3)/(en!(2ζ3 + 1)en) (here
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2ζ3 + 1 is the value of the factor X − ζ2
3 in X2 + X + 1, and the equality follows

from Taylor’s formula). Hence

rn∏
j=1

(tj − 6) =
Fn(ζ3)

n
= − P

(en)
n (ζ3)

en!n(2ζ3 + 1)en
.

Simple computations show that −P (en)
n (ζ3)/(2ζ3 + 1)en = 3 or n or n(n − 1)/3

according as n ≡ 0 or 2 or 1 (mod 3) respectively. Therefore
∏rn

j=1(tj − 6) = 3/n

or 1 or (n− 1)/6 respectively. One formula representing all three cases is

rn∏
j=1

(tj − 6) =
(n

3

)en−1
(
n− 1

2n

) en(en−1)
2

.(13)

Substituting (12) and (13) into (11) yields the desired result.

3. Conclusion

We can now draw the formula relating Wendt’s determinant Wn−1 to the dis-
criminant of the polynomial Tn, namely

Proposition 2. For any odd positive integer n 6≡ 1 (mod 6),

Wn−1 = −92−3en
(
2n−1 − 1

)3
nn+4en−9D(Tn)6,

where en = 0 or 1 according as n ≡ 3 or −1 (mod 6) respectively, and Tn is defined
by (9 ).

Proof. By Lemmas 3 and 5, since dn = n − 3 − 2en and en = 0 or 1, we have
D(Fn) = (−1)rn34−7en(2n−1 − 1)3n2n−15D(Tn)6. On the other hand, Proposition
1 and Lemma 2 imply D(Fn) = (−1)en+(n−1)/23−ennn−4en−6Wn−1. Equating the
two expressions (and noting that rn + en + (n − 1)/2 = 2(n + en)/3 − 1 is odd)
yields the desired result.

Remark. In Proposition 2, let m = n− 1 and hm = 2− 3en, so that m is an even
positive integer 6≡ 0 (mod 6) and hm = 2 or −1 according as m ≡ 2 or 4 (mod 6)
respectively. Noting that 2− en coincides with |hm| and writing Dm for D(Tm+1),
we obtain the formula for Wm stated in the Introduction.

Assume now that n = p is a prime number ≡ −1 (mod 6). Then the leading
coefficient p of Pp divides all its coefficients

(
p
k

)
, for 1 ≤ k ≤ p − 1, so that, by

(3), Fp = pEp where Ep is a monic polynomial in Z[X ]. Thus the roots of Fp are
algebraic integers. Since, by (5), tj is a sum of products of roots of Fp, then tj is
also an algebraic integer, for 1 ≤ j ≤ rp. Hence Tp has rational integer coefficients
and D(Tp) lies in Z. Therefore Proposition 2 (where now ep = 1) implies

Corollary. If p is a prime number ≡ −1 (mod 6), then

Wp−1 = −1

9
qp(2)3pp−2D(Tp)

6,

where the discriminant D(Tp) is a rational integer and qp(2) = 2p−1−1
p .
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