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ON WENDT’S DETERMINANT

CHARLES HELOU

ABSTRACT. Wendt’s determinant of order m is the circulant determinant W,

whose (i, j)-th entry is the binomial coefficient (\iTj\)’ for 1 <i,57 < m. We
give a formula for W,,, when m is even not divisible by 6, in terms of the
discriminant of a polynomial T},+1, with rational coefficients, associated to
(X + )™+t — Xm+1l _ 1. In particular, when m = p — 1 where p is a prime
= —1 (mod 6), this yields a factorization of Wj,_1 involving a Fermat quotient,
a power of p and the 6-th power of an integer.

INTRODUCTION

E. Wendt ([12]) introduced the m x m circulant determinant W,,, with first row
the binomial coefficients ('), (1), ..., (,,",), i-e.

Lo () ()

(o) b () ()

S ¢V € BT
which is the resultant of the polynomials X™ — 1 and (X + 1)™ — 1, in connection
with Fermat’s last theorem ([10]). E. Lehmer ([9]) proved that W, = 0 if and only
if m = 0 (mod 6), and that if p is an odd prime number, then W,_; is divisible by

pP~2q,(2), where g,(2) = 2?*;—1 is a Fermat quotient. L. Carlitz ([2]) determined
Wp—1 modulo pP~!, which he then used to find high powers of p dividing W,_; in
an application in the same connection ([3]). Factorizations of the integers W, for
m < 50 were given in ([7]). The size of W,,, was investigated in ([1]). Granville and
Fee ([5]) determined the prime factors of Wy, for all even m < 200 and consequently
improved on a classical result about Fermat’s equation. This was further improved
in ([6]), where similar computations were carried up to m < 500.
In this article, we show that for all positive even integers m not divisible by 6,

Wy = =97 (2™ — 1)3(m 4 1)~ 4=l DS |

where D,, is the discriminant of a polynomial with rational coeflicients whose roots
are given by a rational function of those of (X + 1)t — X™+! 1 and h,, = 2
or —1 according as m = 2 or 4 (mod 6) respectively. In particular, if p is a prime
= —1 (mod 6) then D,_; is a rational integer and we have the factorization

1 _
Wp—1 = _§qp(2)3pp 2Df§_1-
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1. PRELIMINARY RESULTS

For any positive integer m, let (,,, be a primitive m-th root of unity in C. By a
well-known expression for circulant determinants ([12]),

m—1 /m—1 m—1

) o = 1 (Z (’}j)gf) “TL @+ 1)
j=0 \ k=0 j=0

Denote by n an odd integer > 3 and consider the polynomial

(2) P(X)=(X+1D)"-X"-1.

Its relation to Wendt’s determinant is the following

Proposition 1. For any odd integer n > 3, the discriminant of Py, is
D(P,) = (=1)"2 n" 2W,_;.

Proof. Since P, has degree n — 1 and leading coefficient n, we have ([4] or [11])
D(P,) = (—1)“ =% n~1R(P,, P!), where R(P,, P!) is the resultant of P, and
its derivative P/. We also have R(P,,P.) = (n(n — 1))"~! Hz;f P, (yr), where
Yk = 45}7 (1 < k <n —2) are the roots of P.(X) =n((X +1)""! — X" 1) in

ik qyn—1
C. Every P, (yx) = %, for 1 < k < n—2. The product Hg;f(l —¢k )
n—1

is the value at 1 of (X"~ —1)/(X — 1), which is n — 1. Moreover, since n is odd,

n—2 n—2 o =1
k];[l Q-(t, - = k];[o ((1 + C'ZLT) - 1) —W, .,

by (1). Hence Hz;f P, (yx) = (nV—V;ﬁ and the result follows by substitution.

Now the polynomial P, can be written ([8])
(3) Po(X) = X(X + 1)(X2+ X + 1) F,(X),

where F, lies in Z[X], is prime to X (X +1)(X?+ X +1), has degree d,, = n—3—2e,,
and leading coefficient n, with e,, = 0, 1 or 2 according as n =0, 2 or 1 (mod 3)
respectively. It follows from (2) and (3) that F,,(-X —1) = F,,(X) and F,,(1/X) =
F,(X)/X4 . Hence the set of roots z of F,, in C is partitioned into r, = d,/6
orbits of 6 elements each, namely

1 1 z+1 z
4 Orb(z) = -, —z—1, — — — .
@ ) =z —2- 1 - -, -
Let z1,..., 2., be representatives of the different orbits of roots of F,. For every

1 < j <y, let g; be the monic polynomial whose roots are the elements of Orb(z;).
A straightforward computation gives

(5) ¢i(X)=X+3X°+; X+ (2t; —5)X* +;X*+3X +1 (1<j<ry,)
where

(X2 + X +1)3

(6) tj =6— J(Zj)v J(X) = X2(X + 1)2

Tn

(7) Fn:anj.
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Moreover

(8) 9;(X) = X*(X + 1)* (J(X) = J(2)) (1<j<ra)
We now introduce the polynomial

(9) T.(X) = [[(x =1,

j=1
which lies in Q[X], since the automorphisms of the splitting field of F,, over Q

permute the roots of T}, and thus leave its coefficients fixed. Substituting (8) into
(7) yields

(10) Fo(X) = (—1)"nX?"(X +1)*"T,(6 — J(X)).
This relation, linking T}, to F),, and thus to P,, facilitates computations with T,,.
2. DISCRIMINANTS CALCULATIONS

The resultant of two non-zero polynomials f, g € C[X] is denoted by R(f, g) and
the discriminant of f by D(f). The classic formula ([4]) D(fg) = D(f)D(g9)R(f, g)*
yields by induction

Lemma 1. If fi1,..., fm are non-constant polynomials in C[X], then
D (H ﬁ) =[Ipu). II R
i=1 i=1 1<i<j<m

Using this, the relation (3) allows, when e, < 2, to express D(F},) in terms of
D(P,). Indeed,
Lemma 2. For a positive odd integer n £ 1 (mod 6),
_ (=D D(P)
D(Fn) - 3enpdlentl)

Proof. Assume first n = —1 (mod 6), so that e,, = 1 and
Po(X)=X(X +1)(X2+ X +1)F,(X).
From Lemma 1,
D(p,) = _3(Fn(O)Fn(_1)Fn(€3)Fn(C§))2D(Fn)'

Now, for all odd n, F,(0) = F,(—1) = n, since these are the values of P,(X)/X at
0 and —P,(X)/(X + 1) at —1 respectively. On the other hand, setting P, (X) =
(X? + X + 1)Qn(X), with Q,, € Z[X], we have

F.(¢G) = Qn(C3) _ P (¢s) __n ((C3 +1)nl = ;“1) )
n C3(Cs+1) 25 + 1 e
Also, F,(¢3), being the complex conjugate of F,(C3), is equal to n too. Hence

D(P,) = —3n®D(F},,). Similarly, in the simpler case where n = 3 (mod 6), we have
Po(X) = X(X + 1)F,(X) s0 that D(Py) = (Fn(0)Fy(—1))2D(F,) = n*D(F,).

We now relate the discriminants of F,,, T;, and the g;’s.

Lemma 3. For any odd integer n > 3,

D(F,) = n?@=1), H D(g;).D(T)°.

j=1
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Proof. By (7) and Lemma 1, D(F,,) = n?(@»~1, H;Zl D(gj)-Tli<icj<r, R(g:,95)°.
By (8), for 1 < i,j < 1, R(givgy) = T 95(2) = (J(z0) — J(z)° (I, (2 +1))°
where the products are for z ranging in Orbd(z;), in which case J(z) = J(z;
by (5) and (6). Moreover, [[,z = ¢;(0) = 1 and [[, (2 + 1) = g;(-1) = 1.
Hence R(g;,9:;) = R(gi,9;) = (J(2i) — J(2;))%. On the other hand, D(T,) =
(—=1)mm(ra=1)/2 [Tiz;(ti —t;) = £11,;(J(2j) — J(2:)), where the products are for
all i,7 € {1,...,r,} with ¢ # j. Hence [[,; <, R(gi,9;)? = [1iz; R(gir95) =
[Tig;(J(2i) — J(2;))% = D(T,)% and the result follows.

N

Next, we compute the dicriminants of the g;’s.

Lemma 4. For any odd integer n > 3 and 1 < j < rp,
D(g;) = —(4t; + 3)°(t; — 6)*.

Proof. Let Y = X +1/X. Then g;(X) = X3h;(Y), where h;(Y) = Y3 +3Y2 +
(tj —3)Y +2t; —11; and g§(X) = 3g;(X)/X + (X? — X)h)(Y). Hence

g)=—]:[9§-(2):— <H2> (H(z—i—l)) (H -1 ) TTn z+

where the products are for z € Orb(z;). From the proof of Lemma 3, [], 2z =
[[.z+1) = 1. Also [[,(# — 1) = g;(1) = 4t; + 3. Moreover, y = z+ 1/z
ranges through the roots of h;, each repeated twice, as z ranges through Orb(z;),
2

so that [T, (2 +1/2) = (Hy h;(y)) = D(h;). Thus D(g;) = —(4t; +3)D(h;)>.
Now, setting U = Y + 1, we have h;j(Y) = f;(U) = U® + (t; — 6)U + t; — 6.
By a well-known formula for the discriminant of a cubic polynomial ([11]), we get
D(h;) = D(f;) = —(4t; + 3)(t; — 6)%. Hence the result.

The product, appearing in Lemma 3, of the discriminants of the g;’s is given by

Lemma 5. For any odd integer n > 3,

H D(gj) = (_1)Tn34—7€n (2n—1 _ 1)3/”46”_7 (
j=1

Proof. By Lemma 4,

n—1 2en(en—1)
2n '

4

Tn Tn

3
(11) HD i) H (4t; +3) ﬂ(tj —6)

Now [, (4t; + 3) = (=4)™T,(-3/4). Moreover, substituting X = 1 into (10)
and (3), we get (—4)™nT,(—3/4) = F,(1) = P,(1)/(2.3°"). Hence

F,(1) 2" '-1
12 4t; +3) = = .
(12) e
Similarly, [~ (t; — 6) = (~=1)™T,,(6), and substituting X = (3 into (10) yields

(=1)""nT,(6) = F,(G). Let Qu(X) = X(X + 1)F,(X); then F,(G) = —Qn(¢3)
and, by (3), P,(X) = (X2 + X +1)**Q,(X). Taking e,-th derivatives in the latter

relation and making X = (3, we get Q,((3) = P,ge")((g,)/(en!(%g + 1)¢") (here
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2¢3 + 1 is the value of the factor X — (3 in X2 + X + 1, and the equality follows
from Taylor’s formula). Hence

T~ = 2@ R(G)

n T enn(26s + 1)en

j=1

Simple computations show that —P,Se">(§3)/(2§3 + 1) = 3 or n or n(n —1)/3
according as n = 0 or 2 or 1 (mod 3) respectively. Therefore H;il(tj —6)=3/n
or 1 or (n —1)/6 respectively. One formula representing all three cases is

w M 0= () (%5)

Jj=1

en(en—1)
2

Substituting (12) and (13) into (11) yields the desired result.

3. CONCLUSION

We can now draw the formula relating Wendt’s determinant W,,_; to the dis-
criminant of the polynomial T}, namely

Proposition 2. For any odd positive integer n Z 1 (mod 6),
Wn—l — _92—3en (271—1 _ 1)3 n"+4e"_9D(Tn)6,

where e, =0 or 1 according as n =3 or —1 (mod 6) respectively, and T,, is defined

by (9).

Proof. By Lemmas 3 and 5, since d, = n — 3 — 2e,, and e, = 0 or 1, we have
D(F,) = (—1)m3*7en(2n=1 — 1)3p272=15D(T,,)6. On the other hand, Proposition
1 and Lemma 2 imply D(F,) = (—1)¢»+(n=1)/23=enpn=den=61y7 | Equating the
two expressions (and noting that r, + e, + (n —1)/2 = 2(n + €,)/3 — 1 is odd)
yields the desired result.

Remark. In Proposition 2, let m =n — 1 and h,, = 2 — 3e,, so that m is an even
positive integer Z 0 (mod 6) and h,, = 2 or —1 according as m = 2 or 4 (mod 6)
respectively. Noting that 2 — e,, coincides with |h,,| and writing D,, for D(Ty,+1),
we obtain the formula for W, stated in the Introduction.

Assume now that n = p is a prime number = —1 (mod 6). Then the leading
coefficient p of P, divides all its coefficients (z), for 1 < k < p—1, so that, by
(3), F, = pE, where E, is a monic polynomial in Z[X]. Thus the roots of F, are
algebraic integers. Since, by (5), t; is a sum of products of roots of F},, then ¢; is
also an algebraic integer, for 1 < j < r,. Hence T}, has rational integer coefficients
and D(T),) lies in Z. Therefore Proposition 2 (where now e, = 1) implies

Corollary. If p is a prime number = —1 (mod 6), then
1 _
Wp_1 = _§qz7(2)3pp 2D(Tp)67

where the discriminant D(T),) is a rational integer and gp(2) = 2p7;_1.
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