Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Density of Carmichael numbers
with three prime factors


Authors: R. Balasubramanian and S. V. Nagaraj
Journal: Math. Comp. 66 (1997), 1705-1708
MSC (1991): Primary 11N25; Secondary 11Y11
DOI: https://doi.org/10.1090/S0025-5718-97-00857-0
MathSciNet review: 1422784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We get an upper bound of $O(x^{5/14+o(1)})$ on the number of Carmichael numbers $\leq x$ with exactly three prime factors.


References [Enhancements On Off] (What's this?)

  • 1. W.R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 140 (1994), 703-722. MR 95k:11114
  • 2. W.R. Alford, A. Granville, and C. Pomerance, On the difficulty of finding reliable witnesses, Lecture Notes in Comput. Sci. 877 (1994), 1-16. MR 96d:11136
  • 3. I. Damgård, P. Landrock, and C. Pomerance, Average case error estimates for the strong probable prime test, Math. Comp. 61 (1993), 177-194. MR 94b:11124
  • 4. A. Granville, Primality testing and Carmichael numbers, Notices Amer. Math. Soc. 39 (1992), 696-700.
  • 5. N. Koblitz, A Course in Number Theory and Cryptography, Springer Verlag, New York, 1987. MR 88i:94001
  • 6. Mohan Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. (3) 62 (1992), 257-269. MR 94b:11093
  • 7. R.G.E. Pinch, The Carmichael numbers up to $10^{15}$, Math. Comp. 61 (1993), 381-392. MR 93m:11137
  • 8. C. Pomerance, Carmichael numbers, Nieuw Archief voor Wiskunde 11 (1993), 199-209. MR 94h:11085
  • 9. C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35 (1980), 1003-1026. MR 82g:10030
  • 10. S. Ramanujan, Highly Composite Numbers, Proc. London Math. Soc. (2) 14 (1915), 347-409.
  • 11. P. Ribenboim, The Book of Prime Number Records (Second Edition), Springer Verlag, New York, 1989. MR 90g:11127

Similar Articles

Retrieve articles in Mathematics of Computation of the American Mathematical Society with MSC (1991): 11N25, 11Y11

Retrieve articles in all journals with MSC (1991): 11N25, 11Y11


Additional Information

R. Balasubramanian
Affiliation: Institute of Mathematical Sciences, Tharamani, Madras 600 113, India
Email: balu@imsc.ernet.in

S. V. Nagaraj
Affiliation: Institute of Mathematical sciences, Tharamani, Madras 600 113, India
Email: svn@imsc.ernet.in

DOI: https://doi.org/10.1090/S0025-5718-97-00857-0
Keywords: Carmichael number, primality testing
Received by editor(s): March 8, 1996
Received by editor(s) in revised form: August 7, 1996
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society