A continuity property

of multivariate Lagrange interpolation

Authors:
Thomas Bloom and Jean-Paul Calvi

Journal:
Math. Comp. **66** (1997), 1561-1577

MSC (1991):
Primary 41A05, 41A63

MathSciNet review:
1422785

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a sequence of interpolation schemes in of degree (i.e. for each one has unique interpolation by a polynomial of total degree and total order . Suppose that the points of tend to as and the Lagrange-Hermite interpolants, , satisfy for all monomials with . **Theorem**: for all functions of class in a neighborhood of . (Here denotes the Taylor series of at 0 to order .) Specific examples are given to show the optimality of this result.

**[B]**Thomas Bloom,*Interpolation at discrete subsets of 𝐶ⁿ*, Indiana Univ. Math. J.**39**(1990), no. 4, 1223–1243. MR**1087190**, 10.1512/iumj.1990.39.39055**[Bo]**L. Bos,*On certain configurations of points in 𝑅ⁿ which are unisolvent for polynomial interpolation*, J. Approx. Theory**64**(1991), no. 3, 271–280. MR**1094439**, 10.1016/0021-9045(91)90063-G**[C]**Jean Paul Calvi,*Polynomial interpolation with prescribed analytic functionals*, J. Approx. Theory**75**(1993), no. 2, 136–156. MR**1249394**, 10.1006/jath.1993.1094**[CR]**P. G. Ciarlet and P.-A. Raviart,*General Lagrange and Hermite interpolation in 𝑅ⁿ with applications to finite element methods*, Arch. Rational Mech. Anal.**46**(1972), 177–199. MR**0336957****[Co]**Christian Coatmélec,*Approximation et interpolation des fonctions différentiables de plusieurs variables*, Ann. Sci. École Norm. Sup. (3)**83**(1966), 271–341 (French). MR**0232143****[H]**Lars Hörmander,*An introduction to complex analysis in several variables*, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR**1045639****[K]**Paul Kergin,*A natural interpolation of 𝐶^{𝐾} functions*, J. Approx. Theory**29**(1980), no. 4, 278–293. MR**598722**, 10.1016/0021-9045(80)90116-1**[LP]**S. L. Lee and G. M. Phillips,*Interpolation on the triangle and simplex*, Approximation theory, wavelets and applications (Maratea, 1994) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 454, Kluwer Acad. Publ., Dordrecht, 1995, pp. 177–196. MR**1340890****[L]**Rudolph A. Lorentz,*Multivariate Birkhoff interpolation*, Lecture Notes in Mathematics, vol. 1516, Springer-Verlag, Berlin, 1992. MR**1222648****[M]**Charles A. Micchelli,*A constructive approach to Kergin interpolation in 𝑅^{𝑘}: multivariate 𝐵-splines and Lagrange interpolation*, Rocky Mountain J. Math.**10**(1980), no. 3, 485–497. MR**590212**, 10.1216/RMJ-1980-10-3-485**[N]**Günther Nürnberger,*Approximation by spline functions*, Springer-Verlag, Berlin, 1989. MR**1022194****[SX]**Thomas Sauer and Yuan Xu,*A case study in multivariate Lagrange interpolation*, Approximation theory, wavelets and applications (Maratea, 1994) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 454, Kluwer Acad. Publ., Dordrecht, 1995, pp. 443–452. MR**1340908****[W]**S. Waldron,*Integral error formula for the scale of mean value interpolations which includes Kergin and Hakopian interpolation*, Numer. Math. (to appear).

Retrieve articles in *Mathematics of Computation of the American Mathematical Society*
with MSC (1991):
41A05,
41A63

Retrieve articles in all journals with MSC (1991): 41A05, 41A63

Additional Information

**Thomas Bloom**

Affiliation:
Department of Mathematics, University of Toronto, M5S 1A1, Toronto, Ontario, Canada

Email:
bloom@math.toronto.edu

**Jean-Paul Calvi**

Affiliation:
Laboratoire de mathématiques, UFR MIG, Université Paul Sabatier, 31062 Toulouse Cedex, France

DOI:
https://doi.org/10.1090/S0025-5718-97-00858-2

Keywords:
Multivariable Lagrange interpolants,
interpolation schemes in ${\mathbb{R}}^{n}$,
Kergin interpolation

Received by editor(s):
January 30, 1996

Received by editor(s) in revised form:
August 21, 1996

Additional Notes:
The first author was supported by NSERC of Canada.

Article copyright:
© Copyright 1997
American Mathematical Society